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A B S T R A C T   

Background: The transition from late adolescence to early adulthood is a period that experiences a surge of life 
changes and brain reorganization caused by internal and external factors, including negative affect, personality, 
and social conditions. 
Methods: Non-imaging phenotype and structural brain variables were available on 497 healthy participants (279 
females and 218 males) between 17 and 22 years old. We used sparse canonical correlation analysis (sCCA) on 
the high-dimensional and longitudinal data to extract modes with maximum covariation between structural 
brain changes and negative affect, personality, and social conditions. 
Results: Separate sCCAs for cortical volume, cortical thickness, cortical surface area and subcortical volume 
confirmed that each imaging phenotype was correlated with non-imaging features (sCCA |r| range: 0.21–0.38, all 
pFDR < 0.01). Bilateral superior frontal, left caudal anterior cingulate and bilateral caudate had the highest ca-
nonical cross-loadings (|ρ| = 0.15–0.32). In longitudinal data analysis, scan-interval, negative affect, and 
enthusiasm had the highest association with structural brain changes (|ρ| = 0.07–0.38); at baseline, intellect and 
politeness were associated with individual variability in the structural brain (|ρ| = 0.10–0.25). 
Limitations: The present study used non-imaging variables only at baseline, making it impossible to explore the 
relationship between changing behavior and structural brain development. 
Conclusions: Individual structural brain changes are associated with multiple factors. In addition to time- 
dependent variables, we find that negative affect, enthusiasm and social support play a numerically weak but 
significant role in structural brain development during the transition from late adolescence to young adulthood.   

1. Introduction 

The transition from late adolescence to early adulthood is marked by 
a host of significant life changes (Arnett, 2000) and morphometric 
changes in the brain (Spear, 2000). This is a critical period of life when 
the student population is leaving home for college, entering the work-
force, or starting a family. In Wood’s view, the separation of individuals’ 
transition from late adolescence to early adulthood as a key stage in their 
lives has proven to be a key factor in explaining the social, cognitive, and 
psychological development occurring during this period (The Oxford 
Handbook of Emerging Adulthood, 2015). Adolescence is not the end of 
brain development and changes in the structural brain continue well 
into the third decade of life (Spear, 2000; Taber-Thomas and Perez- 
Edgar, 2015). In previous cross-sectional studies, it has been reported 

that there is a link between inter-individual differences in the structural 
brain and physiological, behavioral, and environmental factors among 
adolescents and young adults (e.g., Spear, 2000). The phenomenon of 
individual variation in structural brain development has been particu-
larly prominent in the transition from adolescence to early adulthood 
(Mills et al., 2021). Meanwhile, this period of life is characterized by the 
high prevalence of internalizing and externalizing disorders (Kessler 
et al., 2005), as well as unique patterns of vulnerability to psychological 
dysfunction. As a result, it is particularly pertinent to psychopathology 
to gain a deeper understanding of the influence of social environment, 
personality, and affective state on structural brain development during 
the transition from late adolescence to young adulthood. 

Young people’s lives undergo drastic changes during the transition 
from late adolescence to young adulthood, including leaving their 
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parental homes and entering university. It has been observed that young 
people have improved their emotional stability, developed a strong 
sense of identity, and have even been in important relationships with 
others during this period (Williams et al., 2006); however, they are 
likely to encounter increasingly stressful situations as a result of expo-
sure to a wide range of new social contexts at the same time. There is a 
possibility that negative affect will increase suddenly in the first year of 
college, but dynamic and static social conditions and personality traits 
will also play an influential role in the changing lives of college students, 
which are key factors associated with structural brain development. 
However, the brain development trajectory varies according to different 
structural components and Tamnes et al. have found that there is a 
strong positive correlation between cortical volume change and thick-
ness change, but not between area change in most brain regions (Tamnes 
et al., 2017). Considering that this variation may be derived from 
external or internal factors, it is necessary to examine the relationship 
between multiple behavioral variables and developmental changes in 
distinct structural brain measures at the same time. 

A number of cross-sectional and longitudinal studies have examined 
the changes in brain structure associated with aging across a wide age 
range (from children to young adults). The cortical volume and thick-
ness of higher-order association cortical regions decrease rapidly 
throughout adolescence, leveling off by young adulthood, and cortical 
surface area increases steadily during early adolescence and gradually 
declines in mid-adolescence to young adulthood in higher-order asso-
ciation cortical regions (Ducharme et al., 2015; Wierenga et al., 2014). 
Additionally, it has been observed that structural brain development 
varies significantly from individual to individual during the transition 
from adolescence to early adulthood (Mills et al., 2021). A dynamic 
interplay between biological and social factors has influenced the 
development of structural brains. Links between genetics and biological 
sex and structural brain development have been reported in several 
studies (Brouwer et al., 2021; Gilbert et al., 2005; Modabbernia et al., 
2021a). It has previously been found that negative emotions are asso-
ciated with more cortical changes in the brain (Jensen et al., 2015). 
Researchers have demonstrated that parent socioeconomic status and 
social support from loved ones can significantly alleviate psychological 
stress in individuals. From a neurobiological perspective, parental so-
cioeconomic status and social support are positively associated with 
increased gray matter volume (Hostinar and Gunnar, 2015; Kanai et al., 
2012; Luby et al., 2013; Noble et al., 2015). The Big Five personality 
traits were found to correlate with brain volume in adults (18–40 years 
old) and the correlation between personality traits and brain structure 
was found during adolescence and into late adulthood (Delaparte et al., 
2019; DeYoung et al., 2010; Kaasinen et al., 2005; Schilling et al., 2013). 
Throughout an individual’s lifetime, this long process of structural brain 
development can facilitate effective adaptation to environmental 
changes. 

There are numerous factors contributing to the development of the 
structural brain, which is why univariate statistical approaches may 
only account for a small proportion of the variance. In this case, the 
multivariate method can be helpful in quantifying the development of 
brain structure and its relationship to phenotype. It is possible that the 
same brain regions are associated with different environmental vari-
ables and behavioral characteristics, and that different brain regions are 
associated with similar psychological characteristics. The use of multi-
variate analysis can take into account potential joint effects or covariates 
within both brain variables and behavioral variables (Genon et al., 
2022). Canonical Correlation Analysis (CCA) is used to identify the 
sources of common variation in two sets of high-dimensional variables 
(Wang et al., 2020). It should be noted, however, that traditional CCA 
models are prone to overfitting and are not well suited to dealing with 
intercorrelated variables. By penalizing some variables by setting their 
contributions to the overall model to zero, sparse canonical correlation 
analysis (sCCA) controls overfitting and penalizes the complexity of a 
learning model (Modabbernia et al., 2021b). 

In the present study, we employed a longitudinal dataset gathered at 
a single site to investigate the relationship between the development of 
cortical volume, cortical thickness, and cortical surface area and nega-
tive affect, personality, and social conditions during the transition from 
late adolescence to young adulthood. There have been numerous studies 
conducted using the massive univariate general linear model to examine 
relationships between structural brain and behavioral variables in small 
samples of healthy individuals. The reliability of these results of brain- 
wide association studies has been challenged (Marek et al., 2022). 
Furthermore, the relationship between behavioral variables and the 
structural brain is likely to be multivariate in nature. Therefore, by sCCA 
(Witten et al., 2009), the current study explored primarily the rela-
tionship between the structural brains of participants who were tran-
sitioning into adulthood and many non-imaging factors, including their 
negative affect, personality, and social conditions, and explored how 
these variables affect their subsequent structural brain development 
using data from Southwest University Longitudinal Imaging Multimodal 
(SLIM) (SLIM) (Liu et al., 2017). 

2. Material and methods 

2.1. Participants 

We used the Southwest University Longitudinal Imaging Multimodal 
dataset (here after referred to as SLIM; Liu et al., 2017), comprising of a 
total of 580 healthy individuals at Southwest University in China scan-
ned between the ages of 17 and 27 (Detailed age distribution of par-
ticipants is shown in Supplementary Fig. S1). As shown in 
Supplementary Figs. S1 and S2, most participants were initially scanned 
in the first year after entering university. This study has been approved 
by the IRB at Southwest University. We obtained appropriate ethics 
committee approval for the research reported, and all subjects gave 
written informed consent to our study. This neuroimaging data has been 
shared through the International Data-sharing Initiative (INDI; http:// 
fcon_1000.projects.nitrc.org/). First, we selected participants (n =
522) with both imaging and behavioral data, and then removed 6 sub-
jects whose imaging phenotype exceeded 3 standard deviations and 19 
subjects whose ages were over 22 years old at baseline (baseline sample: 
n = 497, 279 females and 218 males), as well as both baseline and 
follow-up assessments (developmental change sample: n = 503, 267 
females and 236 males). For details about participants see Liu et al., 
2017. 

2.2. Non-imaging variables 

We evaluated variables related to participants’ demographic char-
acteristics (age, scan interval, and sex), negative affect, personality, and 
social conditions (socioeconomic status and social support). Detailed 
variables and measurement tools are presented in Table S1. 

Missing values for non-imaging features were imputed using MetImp 
online (http://metabolomics.cc.hawaii.edu./software/MetImp). We set 
the imputing threshold to 0.6 because up to 38 % of the total partici-
pants did not complete a specific assessment. 

2.3. Imaging acquisition and processing 

All participants underwent structural (T1w) scanning. The T1w im-
ages were preprocessed on surface-based space using a longitudinal 
stream in FreeSurfer software (v 6.0.0) (http://surfer.nmr.mgh.harvard. 
edu/). Briefly, the entire process includes skull stripping, segmentation 
of brain tissue, separation of hemispheres and subcortical structures, 
and construction of the gray/white interfaces and the pial surfaces. Later 
the cortical surfaces were divided into 68 regions in the Desikan-Killiany 
atlas (Detailed ROIs of Desikan-Killiany atlas considered in the study are 
shown in Table S2). Participants were excluded before statistical anal-
ysis if they had images with poor scan quality. 
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For each region, we estimated regional mean cortical thickness, 
surface area, cortical volume, and subcortical volume by using the 
command mri_surf2surf which maps the fsaverage standard space tem-
plate into individual space, and then we used the command mris_ana-
tomical_stats to calculate regional mean values in individual space. 

2.4. Statistical analysis 

Sparse canonical correlation analyses (sCCA, Witten et al., 2009) 
were used to identify covariations between structural brain develop-
ment and non-imaging variables. CCA aims to find linear combinations 
of variables that are maximally correlated with each other from two 
multivariate sets of variables. By using a sparsity parameter, sCCA im-
plements regularization by penalizing some variables by setting their 
contribution to the overall model to 0, thus reducing the overfitting that 
is a disadvantage of CCA. sCCA generates pairs of variates (i.e. the linear 
combinations of variables from each dataset), weights (i.e. magnitude of 
the contribution of the variable to the variate from the same dataset), 
and canonical cross-loading (i.e. coefficient of the correlation of the 
variable with the variate of the opposite dataset) (Modabbernia et al., 
2021b). 

The present study used the sgcca.wrapper function from the mixO-
mics package to implement sCCA in R. All variables were standardized 
to a mean of 0 and a standard deviation of 1 before being entered into 
the sCCA models (Witten et al., 2009). We then followed standard 
procedures to identify the optimal sparsity parameters for each sCCA 
model as previous study (Modabbernia et al., 2021b). For each analysis, 
we computed the sparse parameters by running the sCCA with a range of 
candidate values (from 1/√p to 1, at 10 increments, where p is the 
number of features in that view of the data) for each imaging and non- 
imaging dataset, and then fitted the resulting models. We selected the 
optimal sparse criteria combination based on the parameters that cor-
responded to the values of the model that maximized the sCCA corre-
lation value. We then computed the optimal sCCA model and 
determined its significance based on exact P values calculated from 1000 
random permutations. The P value was defined as the number of per-
mutations that resulted in an equal or higher correlation than the orig-
inal data divided by the total number of permutations. Because we 
implemented multiple sCCA models throughout the manuscript, the 
significance of each mode was further adjusted using false discovery 
correction (FDR). In addition, statistically significant modes were tested 
for reliability and reproducibility (described below) and only models 
that survived these analyses are reported. For significant sCCA mode, we 
reported weight and loading of the contributing variables if these are at 
least of small effect (>|0.1|) according to current standards. 

2.5. Reliability, reproducibility, and supplemental analyses 

We undertook the following analyses to determine the robustness of 
our results following the previous study (Modabbernia et al., 2021b): (i) 
each sCCA was evaluated for its stability with regard to the sample size 
and composition. In order to achieve this, we repeated each sCCA in 100 
randomly generated subsets containing 10–150 % of the original data in 
10 % increments (1500 subsamples in total); (ii) following the previous 
study (Moser et al., 2018), we calculated redundancy reliability (RR) 
scores for each sCCA; to achieve this we repeated each sCCA in 500 
randomly generated subsets and quantified the reliability of canonical 
cross-loading; (iii) we randomly sampled 50 % of the data 500 times 
(training set), calculated sCCA on each training set and then used the 
weights from the sCCA on the training set on the remaining 50 % of the 
data (test set) to calculate the canonical correlations in the test set. We 
reported only those modes that met the following robustness criteria: (i) 
statistically significant at an FDR-corrected P value <0.001; (ii) had a 
median RR-score > 0.70, and (iii) average canonical correlation on the 
resampled test sets was at least 70 % of that of the training sets. We 
performed additional sCCAs to evaluate the effect of including sex on the 

results. 

2.6. Datasets 

The neuroimaging and non-imaging datasets and their constituent 
variables have been described above. Cortical volume, cortical thick-
ness, cortical surface area, and subcortical volume were examined 
separately because these phenotypes are genetically independent and 
follow different developmental trajectories (Wierenga et al., 2014). As a 
result of focusing on the predictive effect of behavioral variables on their 
developmental changes of structural brains, we only used non-imaging 
data at baseline. Each participant’s developmental changes in imaging 
variables were calculated as (follow-up value – baseline value), which 
was then residualized by the baseline value. Age was retained in the 
main model as it exerts a continuous influence on brain structural 
development during the transition from late adolescence to early 
adulthood. 

3. Result 

The correlations of non-imaging variables are shown in Tables S3 
and S4. The imaging characteristics of the developmental change are 
shown in Table S5 and are shown in Fig. S3. 

3.1. Cortical volume 

3.1.1. Baseline 
The sCCA testing the association between cortical thickness mea-

sures and non-imaging variables was significant (r = − 0.37, PFDR <

0.001, mean (SD) permuted r = 0.18(0.03)) (Fig. 1A) and accounted for 
13.78 % of the covariance. The canonical weights and loading for the 
imaging and non-imaging variables are shown in Supplementary 
Tables S5–S8. Intellect, expressive suppression, negative emotion, sui-
cidal attitude, age, and assertiveness had the highest positive canonical 
cross-loading on the imaging variate while politeness, support utiliza-
tion, perceived social support, family income, withdrawal, cognitive 
reappraisal, and enthusiasm had the highest negative canonical cross- 
loading (Fig. 1B). Canonical cross-loading of ρ > 0.10 were noted for 
nearly all cortical regions and were highest for rostral middle frontal 
(Fig. 1C). 

3.1.2. Developmental change 
The sCCA testing the association between developmental changes in 

cortical thickness measures and non-imaging variables at baseline was 
significant (r = 0.38, PFDR < 0.001, mean (SD) permuted r = 0.16(0.02)) 
(Fig. 1E) and accounted for 14.75 % of the covariance. The canonical 
weights and cross-loading for the imaging and non-imaging variables 
are shown in Supplementary Tables S9–S12. Age, negative emotion, 
nervous, withdrawal, out of control, and objective support had the 
highest positive canonical cross-loading while scan interval, enthusiasm, 
suicidal attitude, orderliness, politeness, and industriousness had the 
highest negative canonical cross-loading (Fig. 1F). Developmental 
changes in cortical thickness with canonical cross-loading of ρ > 0.1 
were noted in most cortical regions; the highest loadings were superior 
frontal and right posterior cingulate (Fig. 1G). 

3.2. Cortical thickness 

3.2.1. Baseline 
The sCCA testing the association between cortical thickness mea-

sures and non-imaging variables was not significant (r = − 0.17, PFDR >

0.05, mean (SD) permuted r = 0.21(0.03)) (Fig. 2A) and accounted for 
3.04 % of the covariance. The canonical weights and cross-loading for 
the imaging and non-imaging variables are shown in Supplementary 
Tables S13–S15. Volatility, trait anxiety, negative emotion, out of con-
trol, depression, and mother’s socioeconomic status had the highest 
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Developmental Change

BaselineBaselineBaseline

sCCsCCCAA rr = -.37***= - 37***. 7rr

sCCsCCAA rrr = .38***= 38****rr

Fig. 1. sCCA for baseline and developmental change in cortical volume. Upper panel: Baseline: A. First canonical correlation coefficient. B. Canonical cross-loading 
for non-imaging variables. C. Canonical cross-loading for imaging variables. D. Decoding result on Neurosynth. Lower panel: Developmental change: E. First ca-
nonical correlation coefficient. F. Canonical cross-loading for non-imaging variables. G. Canonical cross-loading for imaging variables. H. Decoding result 
on Neurosynth. 

sCCC A rr = -.17.r

sCCA r = .37****r

Fig. 2. sCCA for baseline and developmental change in cortical thickness. Upper panel: Baseline: A. First canonical correlation coefficient. B. Canonical cross-loading 
for non-imaging variables. C. Canonical cross-loading for imaging variables. D. Decoding result on Neurosynth. Lower panel: Developmental change: E. First ca-
nonical correlation coefficient. F. Canonical cross-loading for non-imaging variables. G. Canonical cross-loading for imaging variables. H. Decoding result 
on Neurosynth. 
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positive canonical cross-loading on the imaging variate while age, 
objective support, and perceived social support had the highest negative 
canonical cross-loading (Fig. 2B). Canonical cross-loading of ρ > 0.10 
were noted in most cortical regions; the highest loading was right su-
perior parietal, left inferior parietal, left pars triangularis and left 
supramarginal (Fig. 2C). 

3.2.2. Developmental change 
The sCCA testing the association between developmental changes in 

cortical thickness measures and non-imaging variables at baseline was 
significant (r = 0.37, PFDR < 0.001, mean (SD) permuted r = 0.17(0.02)) 
(Fig. 2E) and accounted for 13.95 % of the covariance. The canonical 
weights and cross-loading for the imaging and non-imaging variables 
are shown in Supplementary Tables S16–S20. Age, objective support, 
negative emotion, and nervous had the highest positive canonical cross- 
loading while scan interval, enthusiasm, and politeness had the highest 
negative canonical cross-loading (Fig. 2F). Developmental changes in 
cortical thickness with canonical cross-loading of ρ > 0.1 were noted for 
nearly all cortical regions and were highest for caudal anterior cingulate 
(Fig. 2G). 

3.3. Cortical surface area 

3.3.1. Baseline 
The sCCA testing the association between cortical surface area 

measures and non-imaging variables was significant (r = − 0.37, PFDR <

0.001, mean (SD) permuted r = 0.18(0.03)) (Fig. 3A) and accounted for 
13.64 % of the covariance. The canonical weights and cross-loading for 
the imaging and non-imaging variables are shown in Supplementary 
Tables S21–S24. Politeness, support utilization, withdrawal, volatility, 
perceived social support and cognitive reappraisal had the highest 
positive canonical cross-loading on the imaging variate while intellect, 
expressive suppression, negative affect, age, and suicidal attitude had 

the highest negative canonical cross-loading (Fig. 3B). Canonical cross- 
loading of ρ > 0.10 were noted for nearly all cortical regions and were 
highest for rostral middle frontal and right lateral occipital (Fig. 3C). 

3.3.2. Developmental change 
The sCCA testing the association between developmental changes in 

cortical surface area measures and non-imaging variables at baseline 
was significant (r = 0.37, PFDR < 0.001, mean (SD) permuted r = 0.19 
(0.02)) (Fig. 3E) and accounted for 13.39 % of the covariance. The ca-
nonical weights and cross-loading for the imaging and non-imaging 
variables are shown in Supplementary Tables S25–S28. Trait anxiety, 
age, out of control, negative emotion, withdrawal, nervous and volatility 
had the highest positive canonical cross-loading while scan interval, 
suicidal attitude, compassion, politeness, enthusiasm, openness, order-
liness, family income, and industriousness had the highest negative ca-
nonical cross-loading (Fig. 3F) Developmental changes in cortical 
thickness with canonical cross-loading of ρ > 0.1 were noted for most 
cortical regions; the top 5 highest loadings were right superior frontal, 
bilateral rostral middle frontal, left precuneus and left superior frontal 
(Fig. 3G). 

3.4. Subcortical volumes 

3.4.1. Baseline 
The sCCA testing for the association between subcortical volumes 

and non-imaging variables was significant (r = − 0.20, PFDR < 0.001, 
mean (SD) permuted r = 0.12(0.02)) (Fig. 4A) and accounted for 3.38 % 
of the covariance. The canonical weights and loading for the imaging 
and non-imaging variables are shown in Supplementary 
Tables S29–S32. Politeness, support utilization, perceived social sup-
port, withdrawal, family income, volatility, father’s socioeconomic 
status, and parents’ education showed the highest positive canonical 
cross-loading while intellect, age, suicidal attitude, negative emotion, 

Baseline

Developmental Change

sCCCA r = -.37***3r

sCCA rr = .37****r

Fig. 3. sCCA for baseline and developmental change in cortical surface area. Upper panel: Baseline: A. First canonical correlation coefficient. B. Canonical cross- 
loading for non-imaging variables. C. Canonical cross-loading for imaging variables. D. Decoding result on Neurosynth. Lower panel: Developmental change: E. 
First canonical correlation coefficient. F. Canonical cross-loading for non-imaging variables. G. Canonical cross-loading for imaging variables. H. Decoding result 
on Neurosynth. 
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and expressive suppression showed the highest negative canonical cross- 
loading (Fig. 4B). Canonical cross-loading with the non-imaging variate 
with ρ values ranging from − 0.05 to − 0.16 were noted for all subcortical 
regions with the top five being the right thalamus proper, left hippo-
campus, right amygdala, left thalamus and right putamen (Fig. 4C). 

3.4.2. Developmental change 
The sCCA testing the association between developmental changes in 

regional subcortical volumes and non-imaging variables was significant 
(r = 0.-24, PFDR <0.001, mean (SD) permuted r = 0.12(0.02)) (Fig. 4D) 
and accounted for 4.46 % of the covariance. The canonical weights and 
cross-loading for the imaging and non-imaging variables are shown in 
Supplementary Tables S33–S36. Scan interval, orderliness, subjective 
support, and compassion showed the highest positive canonical cross- 
loading while objective support, withdrawal, out-of-control, age, lone-
liness, anxiety, and depression showed the highest negative canonical 
cross-loading (Fig. 4E). Developmental changes in regional subcortical 
volumes with showed canonical cross-loading with ρ values from − 0.01 
to 0.21, with right caudate having the biggest positive canonical cross- 
loading and right amygdala having biggest negative canonical cross- 
loading (Fig. 4F). 

4. Discussion 

Based on longitudinal data from SLIM, we examined patterns of 
covariation between structural brain characteristics and negative affect, 
personality traits, and social conditions during the transition from late 

adolescence into young adulthood. Through multivariate analysis, we 
determined that the structural brain development during the transition 
from late adolescence to young adulthood showed the highest correla-
tions with scan intervals, negative affect, enthusiasm, and politeness, 
whereas social conditions have a weaker association with structural 
brain development. Besides, we found that the development of subcor-
tical volume was strongly correlated with scan intervals and social 
support. Furthermore, we conducted a cross-sectional analysis and 
highlighted the effect of intellect and politeness traits on the structural 
brain at baseline. 

Our findings demonstrate that scan intervals or age are the most 
significant factors explaining changes in cortical volume, cortical 
thickness, cortical surface area, and subcortical volume when compared 
with personality traits, social conditions, and negative affect. The find-
ings of this study are consistent with previously published research that 
suggests factors associated with time-dependent development remain 
the primary factors driving brain development when other 
physiological-psychological-social factors are taken into consideration 
(Modabbernia et al., 2020), and we extend it by including a sample of 
young adult. Moreover, a more pronounced decrement in structural 
morphology was observed in higher-order association cortical regions, 
such as the superior frontal and caudal anterior cingulate. The spatio-
temporal patterning of cortical maturation thus proceeds hierarchically 
during the transition from late adolescence to young adult, conforming 
to an evolutionarily rooted sensorimotor-to-association axis of a cortical 
organization (Burt et al., 2018; Xu et al., 2020). 

As well as scan interval and age, there appears to be an antagonistic 

Baseline

Developmental Change

sCCsCCs AA rrr = .18**.188 *rr

sCCA rr = -.21***r

Fig. 4. sCCA for baseline and developmental change in subcortical volume. Upper panel: Baseline: A. First canonical correlation coefficient. B. Canonical cross- 
loading for non-imaging variables. C. Canonical cross-loading for imaging variables. Lower panel: Developmental change: D. First canonical correlation coeffi-
cient. E. Canonical cross-loading for non-imaging variables. F. Canonical cross-loading for imaging variables. 
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relationship between personality traits (enthusiasm and politeness) 
associated with positive emotion or well-being and negative affect, such 
as negative emotion or perceived stress. Personality and negative affect 
showed significant negative and positive cross-loading with the devel-
opment of the structural brain separately. These findings were consistent 
with recent studies, which have found that the pattern of covariation of 
brain structural changes (Modabbernia et al., 2021b), brain connectivity 
(Smith et al., 2015), and behavioral phenotypes was predominantly 
spread along a single “positive-negative” axis. Enthusiasm is the sub- 
dimension of extroversion co-variated with the volume of brain re-
gions involved in mentalizing (DeYoung et al., 2010) and politeness is a 
sub-dimension of agreeableness that indicates adherence to social norms 
and refraining from belligerence and exploitation of others (Allen et al., 
2017). In addition, our meta-analysis confirms that the multivariate 
pattern of brain-behavior associations is located in brain areas involving 
the social, mentalizing, and theory of mind. This may imply that brain 
maturation plays a significant role in mastering social skills and 
complying with social norms for emerging adulthood (The Oxford 
Handbook of Emerging Adulthood, 2015) and thus helps individuals to 
integrate from school life into society during the transition from late 
adolescence to young adulthood. 

It is inevitable for students to experience negative emotions and 
stress during their transition from late adolescence to young adulthood 
due to dramatic changes in their living and learning conditions. Our 
imaging results also showed that superior frontal, posterior cingulate, 
and caudal anterior cingulate are most closely related to these variables. 
Prior research had shown that these regions are relevant to emotional 
cognition and adaptive coping skills, as well as symptoms or charac-
teristics of first-episode schizophrenia, autism spectrum disorder, and 
Alzheimer’s disease. (Asmal et al., 2018; Brosch et al., 2021; Laidi et al., 
2019; Lehmann et al., 2010). In short, this may indicate that the 
abnormal developmental changes of the structural brain involved in 
adaptive and maladaptive performance account for many mental health 
diseases, particularly during a period of vulnerability to negative affect, 
such as the transition from late adolescence to young adulthood. 

Beyond the scan intervals, we observed that social support including 
both objective and subjective support was most associated with a 
decelerated decrease in subcortical volumes, which was primarily 
observed in the bilateral caudate. Previous cross-section studies 
declared smaller volume of bilateral caudate was related to negative 
outcomes such as depression (Kim et al., 2008), early life stress (Cohen 
et al., 2006), and suicidal ideation (Ho et al., 2021). The negative 
relationship between social support and the reduction of volume of these 
regions found in our research seems to indicate that the existence of 
social support can protect individuals during the transition from late 
adolescence to young adulthood when maladaptive behavior is easy to 
occur due to internal and external factors. 

At baseline, we found that measures of cortical volume, cortical 
thickness, surface area, and subcortical volumes all showed unitary 
correlation patterns with phenotype, which are intellect and politeness 
traits but they had opposite cross-loading with these measures. The 
intellect trait reflects cognitive exploration and sensitivity to the reward 
value of information while the politeness indicates adherence to social 
norms as well as a willingness to refrain from exploiting others (Allen 
and DeYoung, 2016). This result indicates that politeness is likely to be 
associated with cognitive regulation and social mentalizing. In contrast, 
the intellect aspect of openness is likely to be associated with motivation 
and action. These functions are vital to obtaining social and academic 
success for individuals during the transition from late adolescence to 
young adulthood (Veroude et al., 2013; Wu et al., 2020). In longitudinal 
data analysis, the association between intellect and structural brain 
changes is weak. In some cases, this may be due to the dynamic rela-
tionship between certain personalities and the structure of the brain 
during the first thirty years of life. There should be a focus on the 
relationship between inter- and intra-individual differences in person-
ality traits and the structural brain across a broad age range in future 

studies. 

5. Summary and limitation 

The present study has some limitations. Firstly, in terms of the scan 
interval between baseline and follow-up, it ranged from 4 months to 3 
years, but brain development at these ages is still critical evolving. 
Following prior work, developmental changes in imaging variables were 
calculated as (follow-up value - baseline value), which was then resi-
dualized by the baseline value (Modabbernia et al., 2021b), but this 
indicator is susceptible to scan interval and has limitations in describing 
the trajectory of brain development. Secondly, the non-imaging vari-
ables in the present study are only at baseline, making it impossible to 
examine the relationship between changing behavior and structural 
brain development. But our research also has some advantages. First of 
all, most longitudinal studies of brain development have focused on 
Caucasian populations while Asian populations have been studied less, 
and we have collected structural brain data from Asian individuals using 
the same scan parameters at the same site. Additionally, multivariate 
statistical techniques were used to examine the complex correlation 
between negative affect, personality, as well as social condition and the 
structural brain development of individuals during the transition from 
late adolescence to early adulthood. 

By using multivariate methods, we found the structural brain is still 
changing during the transition from late adolescence to young adult-
hood, showing a decrease in cortical volume, thickness, surface area, 
and subcortical regions, especially bilateral superior frontal, left caudal 
anterior cingulate, and bilateral caudate. During this period, a time- 
dependent manner (scan interval) had a critical effect on brain devel-
opment. Nevertheless, our results also provide evidence for statistically 
robust associations between structural brain changes and negative 
affect, enthusiasm, politeness and social support. These factors may be 
associated with a person’s mental health, as well as their future aca-
demic and social success. 
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