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A Neural Predictive Model of Negative
Emotions for COVID-19
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Abstract—The long-lasting global pandemic of Coronavirus disease 2019 (COVID-19) has changed our daily life in many ways and put
heavy burden on our mental health. Having a predictive model of negative emotions during COVID-19 is of great importance for
identifying potential risky population. To establish a neural predictive model achieving both good interpretability and predictivity, we have
utilized a large-scale (n = 542) longitudinal dataset, alongside two independent samples for external validation. We built a predictive
model based on psychologically meaningful resting state neural activities. The whole-brain resting-state neural activity and social-
psychological profile of the subjects were obtained from Sept. to Dec. 2019 (Time 1). Their negative emotions were tracked and re-
assessed twice, on Feb 22 (Time 2) and Apr 24 (Time 3), 2020, respectively. We first applied canonical correlation analysis on both the
neural profiles and psychological profiles collected on Time 1, this step selects only the psychological meaningful neural patterns for
later model construction. We then trained the neural predictive model using those identified features on data obtained on Time 2.

It achieved a good prediction performance (r = 0.44, p = 8.13 x 1027). The two most important neural predictors are associated with
self-control and social interaction. This study established an effective neural prediction model of negative emotions, achieving good
interpretability and predictivity. It will be useful for identifying potential risky population of emotional disorders related to COVID-19.

Index Terms—Predictive model, negative emotions, COVID-19
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1 INTRODUCTION

N this global pandemic of Coronavirus disease 2019

(COVID-19), our life experienced radical changes. Around
the world, most of us, have been put in lockdown at least
once, and even till today, social distancing is a requirement in
most of the countries. This major life stress events is likely to
have enduring influence on our emotional wellbeing and
mental health.[1] Surging increase of depression and anxiety
disorders[2], [3] is recognized as one of possible consequen-
ces. Itis therefore crucial to establish neural predictive models
of psychological vulnerability to such stressful life events,
which will help us to identify potential risky population
before they develop emotional disorders. One prominent fea-
ture of neural predictive model is its objectivity compared
with self- report approaches. Moreover, neural predictive
models are useful for understanding the neurophysiological
bases underlying individual differences in vulnerability of
emotional disorders under stress. So far, the most common
approach for finding such neural markers is by correlating
psychophysiological symptoms with neuroimaging data.[4]
However, the low interpretability of the neural markers and
the high homogeneity of the data used both in feature selec-
tion and prediction against the exploration of the potential
social-psychological and neurobiological risk for emotional
disorders.[5], [6] Furthermore, lack of independent dataset to
facilitate the external validation hinder the generalization of
the predictive model in some degree.[7]

People differ in both social-environmental and individ-
ual-trait like factors, [8], [9] both of which are shown to have
aneural basis in their intrinsic functional connectivity during
rest [10], [11] and proved to be robust protective/risk factors
for emotion disorders. [12], [13], [14] Thus in this study, we
opt to build an emotion predictive model by combining both
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Fig. 1. Descriptive information of COVID-19 and corresponding emotional changes. (A) The figure presented the number of cumulative confirmed
cases (grey line), cumulative cured cases (pink line), existing confirmed cases (blue line) and cumulative death toll (green line) in China from Jan 19
to Jun 27, 2020. After the rapid growth from Jan 19 to Feb 19, the existing confirmed cases began to fall, and less than 3000 in early April. The orange
line indicated second time point (Feb 22 - 28, 2020) of the psychopathological assessment, around the turning point of the pandemic. The purple line
indicated the third time point (Apr 24 — May 1, 2020) of the psychopathological assessment, the time when existing cases in China is close to 0.
(B) Anxiety (only collected data in Time 2 & 3), stress and depression surge as COVID-19 evolves over time. For each domain, individual's scores
divided by the maximum value of the observed scores and the mean values were obtained within each time point. Significant increase can be visually
observed across time on anxiety, stress and depression. In addition, LME also indicated a significant effect of time on individual’s emotion state
(eTable 2, Supplement, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TAFFC.2022.3181671). (C) The different FC patterns of subject with high (highest 10%) vs. low (lowest 10%) negative emotions in Time 1 can be
visually observed in the connectivity matrix, especially the FC between SubC, DAN, DMN and FPN. Furthermore, the brain map demonstrated differ-
ence of degree centrality between 2 groups. Note that absolute value of the difference of degree centrality between 2 groups were used to generate
the figure. DAN, dorsal attention network; DMN, default mode network; FPN, frontoparietal network; SubC, subcortical network; LimB, limbic network.

their neural and social-psychological profiles (in a large sam-
ple size, n = 542, longitudinal design, see details in Meth-
ods), the approaches which were expected to generate
interpretable neural markers and robust prediction perfor-
mance. To be predictive, those profiles were taken before
COVID-19 (Time 1: September to December 2019), their psy-
chopathological states (focusing on negative emotions) were
tracked twice during the COVID-19 (Time 2: February 22-28,
Time 3: April 24- May 1, 2020). We have also collected
another independent dataset (n = 90) to test the out-of-sam-
ple generalizability of the model.

We have constructed a predictive model for negative
emotions under COVID-19, however, whether these neural
predictors were specific to COVID-19, rather than negative
emotions in daily life is unclear. Compared with negative
life events in daily life, such as failing an exam, this global
crisis with long-term of self-isolation might be associated
with more intense and chronic negative emotions. Thus, we
applied this predictive model on another longitudinal sam-
ple without COVID-19 and expected a relatively poor pre-
dictive performance. We also trained a predictive model for
daily life negative emotions, which allowed us to capture
the different predictive patterns for negative emotions
under COVID-19 and daily life.

2 MEeHTODS

2.1 Participants

This is a large scale, longitudinal study aiming to find a pre-
dictive neural model of negative emotions to the major life
stress events - COVID-19. 901 College students were regis-
tered for this study (273 males, age 17-26 years). Among
them, 604 subjects (177 males, age 17-26 years) completed
MRI scans and a comprehensive assessment of their social-
psychological profile between September 17, - December 11,
2019 (Time 1). On February 22, 2020 (Time 2) and April 24,
2020 (Time 3), the subjects were tested on their psychopath-
ological states, focusing on negative emotions. The specific
testing date of Time 2 and 3 were selected based on the
evolving situation of COVID-19 in China. Time 2 is around
the turning point (peak of existing cases) of the pandemic,
and from this time onwards, the pandemic is relatively
under control. On Time 3 (and onward), the existing cases
in China is below 1500, with a daily increase less than 150
(Fig. 1A). After matching the MRI data on Time 1 and the
behavior data on Time 1 and Time 2, We have 542 subjects
remained (164 males, age 17-26 years). The data of these
subjects were used to conduct feature selection and model
training. On Time 3, 456 of these subjects (133 males,
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age 17-26 years) completed another round of psycho-
pathological assessment. In design, this is part of an
ongoing program - Behavioral Brain Research Project of
Chinese Personality (BBP). We will refer to this dataset
BBP throughout.

In addition to BBP, we have collected another indepen-
dent dataset (n = 90, 18 males, age 18-21 years) for model
validation and predictions out-of-samples. These subjects
completed the MRI scans between June 3, - September 8,
2019, followed by psychopathological assessment on Febru-
ary 22, 2020. It should be noted that both BBP sample and
validation sample consisted with healthy subjects not being
infected by COVID-19. Moreover, we also adopted a sample
(n = 101, 24 males, age 18-20 years) without COVID-19 to
prove the specificity of the COVID-based predictive model.
These subjects completed the MRI scans and psychopatho-
logical assessment between March 13, - April 29, 2018,
followed by 3 psychopathological assessments (average
interval = 1 month).

All participants were healthy, without a history of psychiat-
ric or neurological illnesses prior to admitting to the project.
All participants provided the information consent document
before the experiment and were compensated with money at
the end of the study. The ethical approval of this study was
granted by the Ethics Committee of Southwest University
(H190140), and all procedures involved were in accordance
with the sixth revision of the Declaration of Helsinki.

2.2 Neuroimaging Data Acquisition &
Preprocessing

All neuroimaging data were acquired on a 3T Prisma Sie-
mens Trio scanner, using a 32-channel head coil. Resting-
state fMRI scans (8 mins) were collected using a gradient
echo-planar imaging (EPI) sequence: TR = 2000 ms, TE = 30
ms, flip angle = 90 °, FOV = 224 x 224 mm? resolution
matrix = 112 x 112, slices = 62, thickness = 2.0 mm, slice
gap = 0.3 mm, voxel size = 2x 2x2 mm”. Structural scans
were acquired using a T1-weighted structural images were
acquired using a magnetization prepared rapid acquisition
gradient-echo (MPRAGE) sequence: TR = 2530 ms, TE =
2.98 ms, flip angle = 7°, FOV = 224 x 256 mm?, resolution
matrix = 448 x 512, slices = 192, thickness = 1.0 mm, inver-
sion time = 1100 ms, voxel size = 0.5 x 0.5 x 1 mm°.

The preprocessing procedure was identically performed
for BBP dataset and the other validation samples using Sta-
tistical Parametric Mapping (SPM) and the Data Processing
& Analysis of Brain Imaging toolbox (DPABI). [15], [16] The
processing procedure included the following steps: removal
of the first 10 EPI scans, correction of slice timing and head
motion, spatial normalization, nuisance signal regression,
data scrubbing, spatial smoothing and band-pass filtering.
More details are available in eMethods 1 in the Supplement,
available online.

2.3 Social-Psychological Profile: Environmental
Factors & Psychological Traits

The assessment of social-psychological profile focus on two

parts: environmental factors and psychological traits, both

of which are assumed to be stable across a long time-scale.

[8], [17], [18], [19], [20], [21], [22] The environmental factors
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include socioeconomic status, social relationship, and child-
hood trauma, etc. The psychological traits include emotion
regulation ability, resilience ability and coping flexibility,
etc. The details of these questionnaires are available in
eTable 1 in the Supplement, available online. There were
236 questionnaire measurements in total for each subject,
forming a social-psychological profile matrix - S_raw (sub-
jects x items). To avoid potential confounds from sex and
age-related difference, [23], [24] we regressed out their
influence on each column of S_raw, and used the resulting
residual matrix - S for future analyses. This social-psycho-
logical profile matrix will be used later to select relevant
neural features for the prediction model.

2.4 Emotional Assessments

The mental health problems during the pandemic, espe-
cially those related to emotion disorders, are the current
focus. We therefore tracked their depression, anxiety and
perceived stress levels, both during (Time 2) and after
(Time 3) the worst COVID-situation in China (Fig. 1B). In
the BBP sample, they were measured by self-depression
scale, [25] state anxiety inventory [26] and perceived stress
scale. [27] In the validation sample, they were measured by
beck depression inventory, [28] state anxiety inventory, [26]
perceived stress scale, [27] positive affect and negative affect
scale, [29] and post-traumatic stress disorder scale. [30] In
the independent sample without COVID, they were mea-
sured by beck depression inventory, [28] state anxiety
inventory, [26] perceived stress scale. [27] In BBP sample,
the predictive model was trained with 10 fold cross valida-
tion (10 F-CV). Considering the multidimensional construct
of negative emotion, principle component analysis (PCA)
was performed on the training dataset and we took the first
principle component (PC) of their emotional state measure-
ments representing the core negative emotion scores [31],
[32], [33]. The core negative emotion in the testing dataset
were obtained based on the raw scores of the measures and
the principal component coefficients. In the validation sam-
ple, the first PCs derived from PCA were used as the core
negative emotion scores. The core negative emotion scores
will be used as the dependent variable (D) in both training
and validation of the neural prediction model.

2.5 Multivariate Neural Profile

To build the neural prediction model, we chose to use the
whole-brain multivariate functional connectivity pattern as
model features. This is because emotion related disorders
were shown to be more related to the deficits in the connec-
tions across brain regions than activation within a region.
[34], [35] First, we parcellated the whole brain into 246
nodes based on Human Brainnetome Atlas [36] (excluding
low-level sensory regions like visual cortex and sensorimo-
tor areas). Then, the blood-oxygenation-level-dependent
(BOLD) activity were averaged across voxels within each
region, resulting in BOLD time series of 179 nodes. After
that, a pairwise functional connectivity matrix was con-
structed for each subject by taking the fisher-z transformed
correlation score between nodes. Given this matrix is sym-
metrical, we only kept left diagonal values (15931 edges),
this gives us a neural profile matrix - N_raw (487x15931,
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Fig. 2. Schematic overview of the prediction framework. (A) the predic-
tion framework on BBP sample. The whole sample was divided into 10
subsets, 9 of which were used as the training sample and the the remain-
ing one was used as the testing sample. Step1: Feature selection was
performed on training sample and sparse canonical correlation analysis
(sCCA) was used to identify FC features, which will be used as predic-
tors in the predictive model. Step2: Model training was performed on
training sample, least absolute shrinkage and selection operator
(LASSO) regression algorithm were used to train the predictive model.
To avoid overfitting and ensure the generalizability of the model, the
dataset was randomly resampled 100 times, 70% of the training sample
were used as training set and 30% as testing set. The model with best
prediction performance was used in the subsequent analysis. (B) Predic-
tion in an independent dataset. To test the generalizability of the predic-
tive model, it was applied to predict the negative emotions in the
validation sample. The FC features were generated using the same prin-
cipal component coefficients and unmixing matrices obtained in the BBP
sample. Similarly, principal component analysis was used to obtain the
core scores of negative emotions. This figure was inspired by Fig. 1
reported in the study by Wang et al. (2018) [41] and Fig. 1 reported in
the study by Cui et al. (2018). [42].

subjects x edges). To control potential confounds from age,
sex and mean framewise displacement (FD) power [37],
[38], we regressed out their influences on each column of
N_raw, resulting in the functional connectivity (FC) matrix
N_r. To reduce the dimensionality of the data, we per-
formed PCA on the FC pattern dimension of N_r, keeping
only the top 300 PCs (explaining around 91% of variance).
We obtained the final neural profile matrix - N (487 x300)
for model training. The neural profile matrix for the model
testing were obtained based on the raw functional connec-
tivity data and the principal component coefficients.

2.6 Model Construction
2.6.1 Feature Selection (n = 487)
For the sake of interpretability, which is paramount in psy-

chiatry research, [39], [40] we selected the neural features
that can be linked to social-psychological profile. The social-
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psychological profiles are assumed to be stable, [8], [21],
[22] we expect its related neural features to also be robust,
thereby offering a good generalization and prediction abil-
ity when testing either in a later time within-sample or gen-
eralize across-samples (to an independent dataset, detailed
later).

The predictive model was trained with nested cross-val-
idation, as the outer 10 F-CV loop estimating the generaliz-
ability of the model, and the inner loop determining the
optimal parameter for the LASSO regression model. In the
outer 10 F-CV, the sample were divied into 10 subsets and
we used sparse canonical correlation analysis (sCCA) to
align the neural and social-psychological profiles on the 9
subsets (training dataset). The data matrix S (social-psy-
chological profile) and N (multivariate neural profile)
were fed into sCCA to identify the relationships between
the two sets of multidimensional variables (Fig. 2A: Step
1). This is done by finding two sets of respect tive linear
transformation (i.e., canonical coefficients), such that the
correlation between two projected variables is maximized.
L1 regularization was used in the process to encourage
sparsity [43] so that a small set of dominate modes can be
identified. [41], [44].

The hyperparameters of L1 penalty were tuned in cross-
validation (eFig. 1), the value that yielded the highest
canonical correlation of the first mode was fixed on the
whole sample to conduct the feature selection analysis. The
sCCA method was implemented with R package from
CRAN (penalized multivariate analysis, PMA). [43] sCCA
estimates unmixing matrices A (300 x 236) and B (236 x
236) in order to find latent modes with the highest correla-
tions between U (U = NxA) and V (V = SxB). U represent
the combination of the FC edges and were used as predic-
tors in the neural prediction model. The neural predictors of
the testing dataset were obtained based on the neural profile
matrix and the unmixing matrices (A). For visualization
purpose, the unmixing matrices and the principal compo-
nent coefficients of N_r were used to generate the loading of
the original FC edges and project the sCCA modes (U) back
to the original FC space (Nr)

2.6.2 Model Training & Validation

We obtained the neural predictors of interest (U, obtained
in Time 1) and dependent variable (D) - core negative emo-
tion scores (obtained in Time 2). The job was to build a
model among the columns of U to predict D. To achieve
this, we trained a LASSO regression model with L1 regu-
larization (Fig. 2A: Step 2). The L1 regularization was used
here to avoid overfitting and improve the prediction accu-
racy [45], its hyperparameter is determined across 100 ran-
domly resampled samples (70% of the original sample as
training datasets and 30% as testing datasets). LASSO
regression model was implemented using glmnet package.
[46] The model performance was quantified by the Pearson
correlation and mean absolute error (MAE) between the
actual scores and the predicted scores in the cross-valida-
tion testing sets. The final neural prediction model was
selected based on the best cross-validation performance
and was used to estimate the overall predictive perfor-
mance in Time 2.
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2.7 Model Prediction in an Independent
Dataset (n = 90)

To further test the generalizability of the trained model, we
applied the model to predict the negative emotions in an
independent dataset (Fig. 2B). In this dataset, we extracted
the FC sets based on the same template in BBP dataset and
constructed the FC matrix N_(v_r) (90 x 15931) in the same
way as N_r. To ensure we capture the same neural features
in this independent data set, we obtained the neural profile
matrix - N_v (with analogy to N), based on the same 300
PCs from N_r, and construct the model predictors U_v
(with analogy to U), using the same unmixing matrices A
obtained in the BBP dataset. These predictors were entered
in the prediction model with fixed parameters to predict
their core emotion scores.

2.8 Prediction of Negative Emotions in Daily
Life (n =101)

We hypothesized that compare with negative emotions in
daily life, the present prediction model is more sensitive to
negative emotions under COVID-19. To confirm this
hypothesis, we applied the COVID-based predictive model
on the dataset without COVID. Moreover, to facilitate the
comparation of the different prediction patterns for negative
emotions under COVID-19 and daily life, we also trained a
predictive model for negative emotions in daily life, using
the same approach of BBP sample.

3 RESULTS

3.1 Negative Emotions Surge As COVID-19
Involves Over Time

We first looked at the emotional state of the subjects, sam-
pled before (Time 1, September-December 2019), during
(Time 2, February 22 -24, 2020) and after (Time 3, April 24 -
May 1, 2020) the worst situation of COVID-19 in China
(Fig. 1A). To estimate the effect of time on individual’s emo-
tional state, while treating subject as random effect (eMet-
hods 2, Supplement, available online), we used linear
mixed model (Ime4 Package in R)[38]. We found significant
increases of their depression (p = 2 x 107°), stress (p =
0.004), and anxiety (only collected data in Time 2 & 3, p =
5.55 x 10”) level over time (Fig. 1B, eTable 2 in the Supple-
ment, available online). However, there were no significant
changes of negative emotions in another longitudinal sam-
ple (tracking for 3 times) without COVID (see eTable 3, Sup-
plement, available online).

3.2 Multivariate Brain Patterns During Rest Were
Qualitatively Different in Subjects With High vs.
Low Negative Emotions
The surge of negative emotions, perhaps, is not surprising
given the far-reaching influence of this pandemic to every-
one. It is intriguing to see if such emotion changes can be
predicted from neural activities before the pandemic. We
used whole-brain resting-state functional connectivity (FC)
as a fingerprint of their neural activities given the robust-
ness of resting state networks, and their wide relevance to
mental disorders. [47], [48], [49] First, we investigated
whether the brain patterns during rest differ in subjects
with high vs. low negative emotions. For visualization
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purpose, we contrasted the FC pattern of subject with high
(top 10%) vs. low (lowest 10%) negative emotion scores in
Time 1 (Fig. 1C). Differences can be observed in subcortical
system (SubC), dorsal attention network (DAN), default
mode network (DMN) and frontoparietal network (FPN).
Those brain regions are known to be involved in emotional
processing, [50], [51] mentalizing, [52], [53] executive con-
trol, [54], [55] with wide implications in emotion disorders,
like depression and anxiety. [56], [57], [58], [59], [48] In addi-
tion to comparing changes in FC strength directly, we can
also look for changes in the hub of resting-state networks
(i.e., centrality), we observed differences of the degree cen-
trality between the two groups in DMN, limbic and subcor-
tical systems, suggesting an organizational change in their
neural fingerprint. [60] These results suggest emotional
states differences can be mapped to their multivariate brain
patterns: a logic prior for building neural prediction model
of negative emotions.

3.3 Neural Prediction Model Predicts Negative
Emotion Development Within BBP

To achieve a robust predictive model for negative emotions,
LASSO regression algorithm was performed on BBP sample
in Time 2, with nested CV. The results revealed a strong
association between actual value and predicted value of
negative emotions (r_cv = 0.33, p_cv = 8.88 x 10!, MAE =
14.43). Then, the trained model was applied on BBP sample
in Time 2 (r = 0.44, p = 8.13 x 10%, MAE = 14.58, Fig. 3B),
confirming the reliability of the model.

3.4 Social-psychological Implication of the
Neural Predictors

We used the constructed predictive model to decipher deci-
pher social-psychological implication and functional con-
nectivity pattern of the neural predictors. sCCA algorithm
assign each sCCA mode with a specific pattern that relates a
weighted set of subjective measures to a weighted set of
functional connections. Thus, we can deduce the social-psy-
chological implication of the neural predictors through its
associated subjective measures.

The predictive model revealed five neural predictors
(derived from 4 sCCA modes), which were respectively
associated with social-psychological dimensions includ-
ing self-control, social interaction, emotional support and
stressful life events (see Fig. 4). Here we presented the
detailed subjective items corresponding to two neural
predictors with the strongest predictive weight in Fig. 3A.
The self-control mode was driven by items corresponding
to the poor self-control ability in keeping healthy habits,
including “I am lazy”, “I have a hard time breaking bad
habits”, “I am doing things that are bad for me, if they
are fun”. [61] The social interaction mode contained items
quantifying the degree of the negative social interaction
with others, including “I feel alone and apart from oth-
ers”, “I feel left out” “I feel that I am no longer close to
anyone”. [62] These connectivity-guided social-psycho-
logical dimensions emphasized the vital role of self-con-
trol and social interaction in coping with stressful life
events.
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Fig. 3. Social-psychological implications and FC patterns of the robust neural predictors. (A) We present the social-psychological dimension of top 2
neural predictors (self-control and social interaction) with strongest predict power. The radar map presents items from different social-psychological
domains. Numbers in the inner lines represent loadings for each item in their respective dimension. M1 (orange line) represents the self-control
dimension and M2 (purple line) represents the social interaction dimension. (B) Prediction performance of the trained model. The correlations
between predicted scores and actual scores for the BBP sample in Time 2 and validation sample were presented by the scatter plot. (C-D) The neu-
roanatomical locations of the nodes with the strongest loadings and their corresponding FC patterns of the top 2 neural predictors (C for M1 and D
for M2). we summarized the absolute loadings at nodal level and present the top 10 nodes in each pattern. The FC links of these 10 nodes are thresh-
olded at the 1% according to their absolute loadings in each pattern and then presented with the chord diagram. We also present the differences of
FC patterns between high group (highest 10%) and low group (lowest 10%) of negative emotions on Time 2 with the radar map. To aid visualization,
we choose the FC pattern of DLPFC (M1) and amygdala (M2) as examples. DAN, dorsal attention network; DMN, default mode network; FPN, fronto-
parietal network; LimB, limbic network; SubC, subcortical network; VAN, ventral attention network; DLPFC, dorsolateral prefrontal cortex; VLPFC,
ventrolateral prefrontal cortex; OFC, orbitofrontal cortex; IPL, inferior parietal lobule; MTG, middle temporal gyrus; MFG, middle frontal gyrus; SFG
superior frontal gyrus; STS, superior temporal sulcus; PCun, precuneus; ITG, inferior temporal gyrus; Thal, thalamus; Amyg, amygdala; mofc, medial
orbitofrontal cortex, PCC, posterior cingulate cortex; sgACC, subgenual anterior cingulate cortex; BG, basal ganglia; mpfc, medial prefrontal cortex.

3.5 Functional Connectivity Patterns of the

We also presented the FC patterns with a chord diagram
Neural Predictors

thresholded at the top 1% according to the absolute loading

Next, we decoded the neural patterns of the top two predic-
tors (i.e., the self-control mode and the social interaction
mode). To extract key information from the high-dimen-
sional connectivity data, we calculated the loading of the
original FCs for each neural predictor, then summarized the
absolute loadings for each brain node. Higher value indi-
cates a stronger involvement of such node in a specific neu-
ral predictor? We presented the anatomical distribution of
the top 10 most important (based on the absolute loading)
brain regions (Fig. 3C for self-control mode and Fig. 3D for
social interaction mode, details of the 10 nodes are available
in eTable 4 in the supplement, available online).

of the FC. The FC pattern of the self-control mode was asso-
ciated with nodes including dorsal lateral prefrontal cortex
(DLPFC), ventrolateral prefrontal cortex (VLPFC), orbito-
frontal cortex (OFC), inferior parietal lobule (IPL), middle
temporal gyrus (MTG), and superior temporal sulcus (STS),
regions commonly implicated in cognitive control. [63],
[64], [65], [66] The FC pattern of social interaction mode was
associated with VLPFC, DLPFC, medial orbitofrontal cortex
(MOFC), amygdala and thalamus, all of which have been
implicated in emotional regulation. [51], [67] To aid the
interpretation of the results, we further split the FC patterns
of subjects with high (top 10%) vs. low (lowest 10%)
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negative emotion scores in Time 2. We choose the FC pat-
tern of DLPFC (self-control mode) and amygdala (social
interaction mode) as examples (Fig. 3C-D: radar map), given
their wide implications and reported involvement in emo-
tional disorder. [68], [69], [70]

3.6 Neural Prediction Model Generalizes
Well Out-of-Samples

To test the generalizability of the model out-of-samples, an
external validation was performed on an independent data-
set experienced COVID-19. The BBP-based predictive
model were then applied to an independent validation sam-
ple to generate the predicted scores of their negative emo-
tions. The model performance was estimated by the
Pearson correlation between the predicted scores and actual
scores (r = 0.22, p = 0.035, MAE = 3.23), which confirmed
generalizability of the model and the practical value of these
neural markers.

Moreover, to test whether the predictive model is more
sensitive to negative emotions in COVID-19, rather than
daily life, COVID-based predictive model were then
applied to the dataset without COVID. The results
revealed a marginal significance between predicted scores
and actual scores (r = 0.162, p = 0.087, MAE = 5.24),
which supported the specificity of the COVID-based pre-
dictive model.

Finally, we trained a predictive model for negative
emotions in daily life, using the same approach in BBP
sample (see Fig. 4 and eResults 1 in the supplement, avail-
able online). The predictive model worked well in this
sample (r = 0.44, p = 4.4 x 10°, MAE = 4.14), but not good
in BBP sample (r = 0.05, p = 0.22, MAE = 6.67). In sum-
mary, the prediction model for negative emotions under
COVID-19 demonstrate 2 key predictors: self-control and
the social interaction, while in the prediction model for
daily life negative emotions emphasized the role of impul-
siveness and childhood trauma (see Fig. 4). This might
imply different neural basis underlying the emotional
response toward daily life stress versus COVID-19 related
stress.

4 DISCUSSION

Individual’s mental health has been severely affected by
this pandemic, [71] which implicate the urgency and sign
ificance of exploring neural markers for negative emotions
caused by COVID-19. The present study addressed this
question by exploring the specific FC patterns that predict
individual’s negative emotions under stressful life events.
We do this by applying LASSO regression algorithm to a
large-scale dataset. LASSO is a particular case of the penal-
ized least squares regressionwith Ll-penalty function.
When there is high correlation in the group of predictors,
LASSO chooses only one among them and shrinks the
others to zero, which contribute to improve the prediction
accuracy and produce easily interpretable models. [72]
This dataset in the present is unique in that it contains lon-
gitudinal and multi-dimensional data from subject that
suffering the same stressful life events (i.e., COVID-19).
This dataset serves as a valuable resource for exploring
neural markers of developmental course, and risk/
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Fig. 4. Regression coefficients of the predictive model for negative emo-
tions in COVID-19 and daily life. The predictive model for COVID-19
emphasized the self-control dimension and social interaction dimension,
while the predictive model for daily life emphasized the impulsiveness
dimension, childhood trauma dimension.

protective factors for psychiatric symptom under a sudden
public health accident.

Based on this dataset, we have established a predictive
neural model using psychological-meaningful FC features
(associated with social-psychological dimensions, like self-
control, social interaction, etc.). We chose to only use these
features because interpretability is just as important as pre-
dictivity (if not more) in real life setting. We show this
model can predict negative emotions during COVID-19. We
have also validated this model on an independent external
dataset. The advantage of having a neural model is that it is
free from subjectivity inherit in self report, and it does not
require one to be self-aware of his own mental deficits. This
makes it a more objective model. We hope it can be a useful
tool for screening potential risky population in basic mental
health care.

This model reveals two critical neural predictors for neg-
ative emotions under COVID-19. The first is associated with
self-control ability, emphasizing the role of frontal and pari-
etal cortex. [64], [73], [74] Items in self-control mode refers
to the capacity to keep a healthy and disciplined life, which
constitute the foundation of adaptive behaviors. [75], [76]
The dysfunction of this system, manifested as inefficient
deployment of cognitive resources for flexible, adaptive
responses to a changing world, were shown to be associated
with the symptoms of various mental disorders. [77], [78],
[79], [80] The second predictor was associated with social
interaction. Consistent with previous studies, [81] our
results suggested interpersonal emotion regulation was
another effective coping strategy: seeking support from
others to deal with stress. The neural pattern associated
with social interaction demonstrated a significant involve-
ment of frontal-limbic system, [82], [83], [84] especially the
reciprocal PFC-amygdala relationship, which were previ-
ously reported to be the neural mechanism underlying emo-
tion regulation. [85], [86] Abnormal FCs within this pattern
might accompanied with deficits in emotion processing and
regulation, which ultimately result in increased negative
emotions under stress. Based on the aforementioned points,
we speculate that, neural defects in cognitive control system
and emotion regulation system might be the risk factors for
the negative emotions under stress.
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Unlike COVID-based model, the predictive model for
daily life negative emotions supported that neural predictors
associated with impulsiveness, childhood trauma and copy-
ing flexibility were important for temporary and mild nega-
tive emotions. However, facing with chronic and severe
stress during COVID-19, self-control and positive social
interaction might be more effective coping strategies, for
example, eat, sleep, work and exercise regularly,[87], [88]
keep interactions with family and friends. [89], [90]

The present study utilized the correlation structure
between neural and psychological profiles to build a predic-
tive model with good interpretability. We note all partici-
pants in the present study were healthy subjects, and their
risk of being infected with COVID-19 is relatively low. This
model is therefore intended to be applicable to general pub-
lic, but not to clinical populations. It might be informative
for policymakers, and mental health practitioners for identi-
fying potential risky population of emotional disorder dur-
ing COVID-19.
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