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Stressful life events are significant risk factors for depression, and increases in depressive
symptoms have been observed during the COVID-19 pandemic. The aim of this study is to
explore the neural makers for individuals’ depression during COVID-19, using connectome-
based predictive modeling (CPM). Then we tested whether these neural markers could be used
to identify groups at high/low risk for depression with a longitudinal dataset. The results
suggested that the high-risk group demonstrated a higher level and increment of depression
during the pandemic, as compared to the low-risk group. Furthermore, a support vector machine
(SVM) algorithm was used to discriminate major depression disorder patients and healthy
controls, using neural features defined by CPM. The results confirmed the CPM’s ability for
capturing the depression-related patterns with individuals’ resting-state functional connectivity
signature. The exploration for the anatomy of these functional connectivity features emphasized
the role of an emotion-regulation circuit and an interoception circuit in the neuropathology of
depression. In summary, the present study augments current understanding of potential
pathological mechanisms underlying depression during an acute and unpredictable life-
threatening event and suggests that resting-state functional connectivity may provide potential
effective neural markers for identifying susceptible populations.

Public Significance Statement
The primary aim of this study is to exploit and validate individualized neural markers to
facilitate the prediction of depressive emotions during COVID-19. The predictive model
worked well in the prediction of depression and was successfully validated in an
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independent sample. The results indicated two main functional connectivity patterns in the
prediction of depression, including an emotion-regulation circuit and an interoceptive
circuit. We believe these findings can be informative for mental health practitioners to
identify and help potential populations at risk for emotional disorder during COVID-19.

Keywords: COVID-19, depression, functional connectivity, neural markers

Supplemental materials: https://doi.org/10.1037/amp0001031.supp

The COVID-19 pandemic is causing mental health pro-
blems around the world (Hossain et al., 2020; Talevi et al.,
2020). Previous studies have demonstrated that the fear of
infection and death can lead to feelings of helplessness and
desperation (Wang et al., 2020). Specifically, during the severe
acute respiratory syndrome (SARS) pandemic, both infected
and noninfected communities reported a significant increase
in psychiatric symptoms (Sim et al., 2010). Although most
people do not develop major depression disorder (MDD) after
exposure to negative life events, there are abundant evidences
supporting the strong association between stressful life events
and the onset (or symptom severity) of depression (Hammen,
2005; Kendler et al., 2001). The diathesis–stress model sug-
gests that preexisting vulnerabilities increase the risk of
psychiatric disorders only under exposure to stressors
(Eberhart et al., 2011). Both retrospective and prospective
studies have supported this view by revealing stressful life
events as robust predictors for depression (Kendler et al.,
2001; Van Praag et al., 2004). In summary, based on the
suggested causality between stressful life events and depres-
sion, it is reasonable to speculate that individuals’ depression
would increase as the COVID-19 pandemic surges.
Aberrant brain structure or communication between large-

scale functional brain networks has been detected in MDD
patients, and most of these studies suggested brain areas
including the frontal cortex and subcortical areas, such as the
amygdala and hippocampus, as underlying the neuropathol-
ogy of MDD (Kaiser et al., 2015; Schmaal et al., 2016).
Despite the neural basis of depression having been widely
investigated both in clinical and nonclinical samples (Wang
et al., 2015, 2012; Wei et al., 2020), the neural underpinning
of depressive symptoms caused by a particular stressful life
event (like the COVID-19 pandemic) is poorly understood.
As a data-driven approach, connectome-based predictive
modeling (CPM; Finn et al., 2015; Shen et al., 2017) adopted
multivariate pattern analysis based on whole-brain resting-
state functional connectivity (FC). In particular, this tech-
nique utilizes the rich information provided by magnetic
resonance imaging (MRI) data and works well in the gener-
alization of results (Yoo et al., 2018).
Although everyone suffered from the COVID-19 pan-

demic, the ability to cope with stressful life events varies

among human beings (Zong et al., 2010). Individual
differences in vulnerability to depression might be magni-
fied by the COVID-19 pandemic, that is, an individual with
poor coping ability might develop a higher level of depres-
sion. Individuals’ depression after a particular negative
life event has not been studied in a highly homogeneous
group. Having a large sample of MRI data and longitudinal
behavior data during the pandemic is unique and valuable
in this sense. Exploring neural markers for depression
across the pandemic could not only contribute to
the identification of the vulnerable groups especially sen-
sitive to stressful events but also facilitate the comprehen-
sion of the neuropathology underlying stress-induced
depression.
The present study is designed to investigate the neural

makers for individuals’ depression under COVID-19. Base-
line depression was measured in 2019 after MRI scanning
(Time 1), and depression during the pandemic was mea-
sured on February 22–28 (Time 2, the peak point of the
COVID-19 pandemic in China) and April 24–May 1 (Time
3) in 2020 (Figure 1A). First, a linear mixed-effect (LME)
model was used to estimate the changing trajectories of
depression across the pandemic. Second, a predictive model
was trained to predict individuals’ depression at Time 2
based on the large sample of resting-state functional Mag-
netic resonance imaging (fMRI) data. Although we found
the FC features that could predict individuals’ depression
during the COVID-19 pandemic, it is unclear whether these
features could be used to identify vulnerable groups sus-
ceptible to depression in response to stressful life events.
Thus, we divided the sample into two groups according to
the FC strengths of these features, and LME was imple-
mented to test a group difference in the intercept (main
effect of group) as well as the trajectory or slope of changes
over time (Time ×Group interaction). We hypothesized that
the high-risk group would suffer higher increases of depres-
sion across the pandemic. Third, to verify the generalizabil-
ity of CPM, we applied the predictive model to an
independent dataset. Finally, we tested whether these FC
features could be used to classify MDD patients and healthy
controls. Thus, the FC features were extracted and used as
input patterns to a support vector machine (SVM) classifier.
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Accuracy, specificity, and sensitivity were used to evaluate
the classification performance.

Method

Participants

BBP Sample

The data set is part of an ongoing project: Behavioral-Brain
Research Project of Chinese Personality (BBP). The parti-
cipants were recruited for this project and completed the MRI
scanning between September and December 2019. Among
them, 901 participants were recontacted for the behavioral
test during the COVID-19 pandemic. Six hundred four
participants (177 males, aged 17–26 years) finished the
MRI scanning and the behavioral test. All participants
were right-handed, and none of them had a history of
psychiatric or neurological illnesses. Every one of the parti-
cipants provided the informed consent document prior to the
experiment and was compensated with money at the end of
the study. The ethical approval of this study was granted by
the Ethics Committee of Southwest University, and all
procedures involved were in accordance with the sixth revi-
sion of the Declaration of Helsinki. Baseline depression was
assessed after the MRI scanning. Time 2 depression was
measured on February 22–28, 2020 and Time 3 depression
was measured on April 24–May 1, 2020, using the Self-
Rating Depression Scale (SDS; Zung, 1965). Details of SDS
are presented in Supplemental Information Method s2.

Validation Sample

The participants of the validation sample were college
students at Southwest University. All participants were
right-handed, and none of them had a history of psychiatric

or neurological illnesses. Depression during the COVID-19
pandemic was measured on May 2, 2020, using the center for
Epidemiological Studies Depression Scale (CES-D; Radloff,
1977). Two hundred eighty-two participants completed the
behavior measures but only 32 participants (5 males, aged
18–21 years) completed the MRI scanning before the out-
break of COVID-19.

Major Depression Disorder Sample

Two hundred eighty-two MDD (99 males, aged 18–60
years) outpatients and 254 healthy controls (88 males, aged
18–60 years) were recruited in this sample. Resting-state
functional MRI scanning was completed at Southwest Uni-
versity. All the participants completed the diagnostic inter-
view by experienced doctors using the structured clinical
interview for the Diagnostic and Statistical Manual of Men-
tal Disorders, 4th edition, for axis I disorders. In this study,
the Beck Depression Inventory-II (BDI-II; Beck et al., 1996)
was used to measure the depression severity of the partici-
pants. The study was approved by the institutional review
board of Chongqing Medical University for the protection of
human subjects and was performed in accordance with the
Declaration of Helsinki. All participants signed written
informed consent to participate.

Data Acquisition and Preprocessing

For the resting-state fMRI scan, participants were in-
structed to keep their eyes closed and rest without thinking
about anything in particular. Whole-brain functional images
were acquired on a 3.0 T Siemens Trio MRI scanner. All
fMRI data were preprocessed using Statistical Parametric
Mapping (SPM; http://www.fil.ion.ucl.ac.uk/spm) and a
data processing assistant for resting-state fMRI (DPARSF;
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Figure 1
The Changes of Depression Scores During COVID-19 Pandemic

Note. (A) The development of COVID from January 19, 2019 to June 17, 2020, in China. Individuals’ depression was measured on February 22–28
(gray line: the peak point of the pandemic) and April 24–May 1 (black line: the time when the pandemic was under control) separately. (B) Overall
trend for the changes of depression during the pandemic. See the online article for the color version of this figure.
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Chao-Gan & Yu-Feng, 2010). The processing procedure
included the following steps: removal of the first 10 EPI
scans, correction of slice timing and head motion, spatial
normalization, nuisance signal regression, data scrubbing,
spatial smoothing, and band-pass filtering. Details are pro-
vided in Supplemental Information Method s1.

CPM-Based Prediction

CPM was recently developed to predict individual differ-
ences in personality traits and cognitive abilities (Finn et al.,
2015; Rosenberg et al., 2016), via functional connectivity
derived from fMRI. First, the average blood-oxygenation-
level-dependent time series of the resting-state fMRI data
were extracted based on the Human Brainnetome Atlas
(Fan et al., 2016). Then Pearson’s correlation was used to
construct an individual-level functional connectivity matrix,
and the correlation coefficients were Fisher’s r-to-z trans-
formed. During the feature selection step, the partial correla-
tion was performed to calculate the correlation between
functional connectivity and depression scores (Time 2),
controlling for age, sex, and mean framewise displacement
power. Edges were chosen based on a predefined threshold (p
< .00001) and separated into a positive network and a
negative network. We also performed CPM with other
thresholds and presented the results in the Supplemental
Information. The positive and negative network strengths
were obtained by summing the edges within the network.
Then, a linear model was trained based on the training data,
with positive and negative networks computed separately and
the model was validated using leave-one-out cross-valida-
tion. Prediction performance was assessed by correlating
predicted scores and observed scores. In addition, the signif-
icance of the predictive model was assessed with a permuta-
tion test. We randomly shuffled depression scores 1,000
times and ran the above prediction pipeline for each time
to obtain a null distribution of the Pearson correlation
coefficient between the predicted and actual scores. The
number of the null r values was greater than or equal to
the observed r value plus one and then divided by 1,001
providing an estimated p value. Because the prediction net-
works were slightly different in each iteration of the cross-
validation, the common edges from all the negative networks
were extracted to construct the final predictive model.
Finally, to test the generalization of the predictive model,
we applied it to an independent validation sample.

Statistical Analysis

Linear and quadratic LME were used to evaluate the
changing trajectories of individuals’ depression across the
COVID-19 pandemic. LME estimates the fixed effect of time
on individuals’ depression while including within-person

variation as nested random effects in the model. This is
done to control for individual subject effects and correlation
of the data inherent to longitudinal analysis. The null, linear
and quadratic models were as follows:

1. Null model: Depressionij = Intercept0i + ε,

2. Linear model: Depressionij= Intercept0i+ α (time)+ ε,

3. Quadratic model: Depressionij = Intercept0i +
α (time) + β (time2) + ε,

where Depressionij represents the level of depression at the
jth time point for the ith participant, the intercept0i represents
the grand mean at baseline, α and β represent the effects of
each fixed term, and ε is the residual error and reflects
within-person variance. All models also included a random
intercept for each participant. Likelihood-ratio tests and
Akaike information criterion (AIC) were used to compare
the models and to determine which had the best fit. All
models were tested against a null model that included only
the intercept term, but not the fixed effect of time. The model
with the lowest AIC that was also significantly different from
the less complex model as determined by the likelihood-ratio
test was chosen as the best fit model (e.g., the linear model
had to have a lower AIC and be significantly different from
the null model; the quadratic model had to have a lower AIC
and be significantly different from both the null model and
linear model).
Then we tested whether these neural markers could be used

to identify groups at high/low risk of depression. We ex-
pected the high-risk group would suffer higher increases of
depression during the pandemic. We divided the sample
into high-/low-risk groups according to the sum of the FC
strengths in the predictive model. Specifically, the scores
were normalized and the low FC group contained individuals
with z score < 0, while the high FC group contained
individuals with z score≥ 0. Then, LMEwas used to estimate
the group difference (low-risk group vs. high-risk group) in
changing trajectories of depression across the pandemic.
Group, time, as well as a Time × Group interaction were
included in the model.

Classification Framework

A polynomial kernel-based nu-support vector machine
classifier based on the LIBSVM library (Chang & Lin,
2011) was applied to evaluate the classification performance
of the FC features with the leave-one-out cross-validation
procedure. The FC features were selected according to the
CPM results and used as input patterns for the SVM classi-
fier. The performance of the classifier was assessed using the
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sensitivity, specificity, and classification accuracy based on
the results of the cross-validation.

Results

Demographics and Behavior Results

The demographic data of the BBP sample are presented in
Table 1. Paired t test suggested that there were significant
increases of depression from Time 1 to Time 3 (PT1_T2 <
.001, PT2_T3 = .004, PT1_T3 < .001, see Table 1). For
demographic data of other samples, please see Table s1 in
Supplemental Information. LME was used to estimate the
trajectory of depression and the results suggested that the best
model is the quadratic model (see Table 2, Figure 1B).

CPM Results

CPM results indicated that the negative network, but not
the positive network, could predict individuals’ depression
during the COVID-19 pandemic (r = 0.179, p = 9.3 × 10−6,
Figure 2C, Table s2). It is common that depression is
associated with emotional hypo-arousal, which was accom-
panied by hypo-connectivity between the frontal cortex and
subcortical regions (Cheng et al., 2018; Rolls et al., 2019;
Tang et al., 2013). Thus, the subsequent analysis was per-
formed based on the negative network. To evaluate the
chance level for the predictive power of the model, we

performed 1,000-run permutation tests and the result sur-
vived the permutation test with resampling to estimate the
changed null distribution for hypothesis testing (p = .006).
We also presented the results of other thresholds of CPM in
the Supplemental Information Figure s1.

External Validation

We used an independent validation data set to test the
generalizability of the predictive model, and the results
indicated that the model could predict individuals’ depres-
sion in the validation sample (r = 0.407, p = .021, Fig-
ure 2D).

Anatomical Distribution of Edges Within the
Predictive Model

We explored the anatomical distribution of edges in the
predictive model and two main FC patterns were revealed
(see Figure 2A, B). The first pattern was involved in
emotion regulation, and comprised the brain regions of
the cortical-thalamus-limbic system, especially the frontal
cortex’s FC with the amygdala and parahippocampal gyrus
(Albaugh et al., 2013; Banks et al., 2007; Ramanathan et al.,
2018; Taylor & Liberzon, 2007). The second pattern related
to interoception was involved in the FC between the insula
and frontal cortex (Caseras et al., 2013; Hassanpour et al.,
2018). The brain regions involved in the negative prediction

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Table 1
Demographic Data of the BBP Sample

Index

Age Depression T1 Depression T2 Depression T3

Female Male All (male) All (male) All (male)

N 628 273 795 (241) 901 (273) 737 (226)
M 19.45 19.26 36.09 50.50 51.43
SD 0.78 1.01 6.86 10.41 11.10

Paired
t test

Depression T1
versus T2

Depression T2
versus T3

Depression T1
versus T3

(N = 795) (N = 737) (N = 651)

t value −44.804 −2.912 −38.438
p value <.001 .004 <.001

Note. BBP = Behavioral-Brain Research Project of Chinese Personality.

Table 2
Linear and Quadratic Linear Mixed-Effect Models Were Used to Determine Best-Fit Model for Depression Changing Under COVID-19

Best-fit model for depression changing
during COVID-19 pandemic Model AIC Log-likelihood Test Likelihood ratio p value

Null model 1 17,921 −8957.40
Linear model 2 17639.11 −8813.56 2 versus 1 −110.44 <.0001

2 versus 3 60.04 <.0001
Quadratic model 3 17510.38 −8748.19 3 versus 1 −170.48 <.0001

Note. AIC = Akaike information criterion.
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network are consistent with current studies of depression
(Avery et al., 2014; Erk et al., 2010; Harshaw, 2015; Rive
et al., 2013).

Group Difference in the Changing Trajectories of
Depression

The LME model included time, group as well as Time ×
Group interaction to test the group difference in the intercept
and slope. Overall, the high-risk group showed higher levels
of depression compared with the low-risk group across the
pandemic. Moreover, a significant Time × Group interaction
was revealed by the model (see Table 3, Figure 3), indicating

a steeper increase of depression in the high-risk group across
the pandemic, compared with the low-risk group.
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Figure 2
Functional Connections Predicting Depression During the COVID-19 Pandemic

Note. (A) Ring plot displays the predictive network and (B) demonstrate the degree centrality of each ROI in the predictive network.
(C andD) The correlation between the predicted value and actual value in BBP sample and validation sample. Amyg= amygdala; Hipp=
hippocampus; BG = basal ganglion; SFG = superior frontal gyrus; MFG = middle frontal gyrus; IFG = inferior frontal gyrus; OrG =
orbital-frontal gyrus; PrG= precentral gyrus; PCL= paracentral lobule; STG= superior temporal gyrus;MTG=middle temporal gyrus;
ITG= inferior temporal gyrus; FuG= fusiform gyrus; PhG= parahippocampal gyrus; pSTS= posterior superior temporal sulcus; SPL=
superior parietal lobule; IPL = inferior parietal lobule; PCu = precuneus; PoG = postcentral gyrus; INS = insula; CG = cingulate gyrus;
MVOcC =medioventral occipital cortex; LOcC= lateral occipital cortex; PCC= posterior cingulate cortex; CPM= connectome-based
predictive modeling; BBP = Behavioral-Brain Research Project of Chinese Personality; ROI = region of interest. See the online article
for the color version of this figure.

Table 3
Linear Mixed-Effect Model Estimated for Time, Group, and Time ×
Group of Depression

Parameters Estimate SE t value p value

Group (low vs. high) −6.07 2.59 2.34 .019
Time 30.00 2.03 14.77 <.0001
Time2 −5.56 0.51 −10.95 <.0001
Time × Group (low vs. high) 7.45 2.88 2.58 .009
Time2 × Group (low vs. high) −1.86 0.72 −2.58 .010

Note. Group was coded as a factor.
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Classification Results

To test whether the features of the predictive model could
distinguish MDD patients from healthy controls, a polynomial
SVM classifier was used to evaluate the classification perfor-
mance. The results showed an overall classification accuracy
of 83%, with a sensitivity of 90% and a specificity of 68%. The
weights of the FC features in SVM classification are presented
in Figure s2, suggesting strong discriminative power of brain
areas including the parahippocampal gyrus, amygdala, thala-
mus, insula, middle frontal gyrus (MFG), middle temporal
gyrus (MTG), and inferior temporal gyrus (ITG).

Discussion

To the best of our knowledge, this is the first study to
explore the neural mechanisms underlying individual dif-
ferences in depression during the COVID-19 pandemic, a
topic of great interest and significance, with a large sample
(n = 604). First, we revealed the functional connectivity
pattern which could predict individual differences in
depression across the pandemic and demonstrated success-
ful generalizability of the predictive model on a validation
sample. Second, LME suggested the quadratic model as the
best fit model to describe the changing trajectory of in-
dividuals’ depression. The longitudinal data revealed that
the high-risk group suffered steeper increases of depression
during the pandemic. Finally, SVM-based classification
suggested a good prediction accuracy of the FC features
in discriminating MDD patients and healthy controls. These
findings provide neural markers for identifying depression-
prone individuals and also provide information for psycho-
logical intervention.

Emotion-Regulation Circuit

Consistent with previous studies, our results emphasized
the functional connectivity of the frontal-limbic system in the
neuropathology of depression under stress (Luking et al.,
2011). Clinical studies have highlighted that the crucial
pathways of the frontal-limbic system are disrupted among
MDDpatients, accompanied by inefficient emotion-regulation
processes in response to a stressful stimulus (Seminowicz
et al., 2004). Empirical studies have elucidated reciprocal
prefrontal cortex-amygdala communications during successful
emotion regulation (Banks et al., 2007). In addition, altered
connectivity of the parahippocampal gyrus might be associ-
ated with deficits in emotion-mediated memory formation
observed in depression (Savitz&Drevets, 2009). These results
suggest that the decreased frontal-limbic connectivity in
an individual with higher levels of depression might be
associated with emotion dysregulation.
Furthermore, this study revealed that another pivotal brain

region associated with depression during the pandemic is the
thalamus. The thalamus is involved in transferring sensory
information from the external environment to diverse parts of
the cerebral cortex where sensory information can be inte-
grated systematically (Lanius et al., 2003). A previous study
indicated that high emotional arousal can result in altered
thalamic sensory processing (Salay et al., 2018). The interac-
tion between the thalamus and cortical regions has been proved
to be critical for attention and cognitive control (Schmitt et al.,
2017). Thus, decreased thalamus-related FC might be impli-
cated in altered sensory information transmission, which
ultimately leads to disturbances in autonomic regulation in
response to a stressful stimulus (Drevets et al., 2008).

Interoception Circuit

Functional connectivity between the frontal cortex and
insula was also reported in the predictive model. Both
neuropsychological and neuroimaging studies have sug-
gested the role of the insula in interoceptive awareness
(Critchley et al., 2004; Simmons et al., 2013). Aberrant
connections between the insula and frontal cortex have
been widely reported in neuroimaging studies of MDD
(Drevets et al., 2008; Greicius et al., 2007). We proposed
that depression is associated with decreased functional con-
nectivity between the frontal cortex and insula, as well as the
basal ganglia, which might indicate susceptibility to somatic
and interoceptive dysfunction (Sheline et al., 2010).

The Change Trajectory of Depression Across
COVID-19 Pandemic

The present study describes the changing trajectory of
individuals’ depression, that is, individuals’ depression
increased rapidly after the outbreak, and the growth rate
slowly declined as the pandemic was brought under control.
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Figure 3
Changing Trajectories for Depression During the COVID-19
Pandemic

Note. The orange line represents the low-risk group and the green line
represents the high-risk group. See the online article for the color version of
this figure.
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LME results indicated that the high-risk group suffered higher
levels and increments of depression across the pandemic.
Acute and unexpected stressful life events will increase
depressive symptoms; however, the intensity of the influence
varies among people. These results imply that individuals
susceptible to depression under stress can be identified based
on a specific FC pattern. The predictive model contains brain
regions involved in emotion regulation (cortical-limbic-thal-
amus system), suggesting high-risk groups might have more
difficulty in dealing with stressful life events, due to the
deficiency in their emotion-regulation circuits. Thus, it is
reasonable to infer that emotion-regulation training might
be helpful for high-risk individuals to cope with acute stress.

Discrimination of Major Depressive Disorder Patients
and Healthy Controls

This study demonstrated that the features of CPM can
reliably discriminate between MDD patients and healthy
controls, which suggests that these FC features are among
the neurobiological underpinnings of depression. The brain
regions of the CPM networks, including the parahippocam-
pal gyrus, amygdala, thalamus, insula, MFG,MTG, and ITG,
have been widely suggested to be powerful in MDD classifi-
cation (Cao et al., 2014; Guo et al., 2014; Zeng et al., 2012).
In summary, these results demonstrated the shared neurobi-
ological underpinning of depressive symptoms in normal
people under stress and MDD patients, which also implicates
stressful life events as important etiological factors for
depression.

Limitations

The present study has several limitations. All participants
were healthy college students, and their risk of being infected
with COVID-19 was relatively low. Future work might
validate these neural markers in patients infected with
COVID-19. Furthermore, the present study only focused
on individuals’ depression, and a more comprehensive
approach is needed to investigate neural markers for indivi-
duals’ mental health during COVID-19. Also, exploration of
protective factors for mental health under stressful life events
is another valuable direction for future studies.

Conclusion

The present study demonstrated the role of an emotion-
regulation circuit and an interoception circuit in the predic-
tion of depression under stressful life events, with multiple
data sets and a machine-learning predictive framework.
These neural markers could also discriminate MDD patients
from healthy controls. These findings augment the under-
standing of the pathological mechanism of depression under
a stressful life event and suggested that resting-state func-
tional connectivity may provide effective neural markers for

identifying populations who are susceptible to depression
after exposure to major stressful events.
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