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Abstract 

Major depressive disorder (MDD) is the most burdensome psychiatric disorder characterized by 

remarkably heterogeneous clinical phenotypes. It remains challenging to delineate the heterogeneity 

of neurobiological abnormalities underlying the clinical variance and, on this basis, to identify 

neurophysiological subtypes of MDD patients. Here, using a large multisite resting-state functional 

MRI data from 1,148 MDD patients and 1,079 healthy controls, we generated lifespan normative 

models of functional connectivity strengths, mapped the heterogeneity of patients’ individual 

deviations, and identified neurobiological MDD subtypes. MDD patients showed positive deviations 

mainly in the default mode and subcortical areas, and negative deviations widely distributed over the 

cortex. However, there was a great inter-subject heterogeneity as indicated by that no more than 3.14% 

of patients deviated from the normative range for any brain region. Two neurophysiological MDD 

subtypes were identified. Subtype 1 showed severe deviations with positive deviations in the default 

mode, limbic, and subcortical areas, and negative deviations in the sensorimotor, dorsal and ventral 

attention areas, while subtype 2 showed a moderate but conversed deviation pattern. The 

severe-deviation subtype had older age, higher medicated proportion, and higher Suicide item score, 

while the moderate-deviation subtype showed higher Work and Activities and Depressed Mood item 

scores. Moreover, the baseline deviations in the severe-deviation subtype were predictive of 6-month 

antidepressant treatment effects in a subsample. To our knowledge, the current study is the largest 

multisite analysis of neurophysiological MDD subtyping to date and the findings shed light on our 

understanding of the biological mechanisms underlying the intersubject heterogeneity of clinical 

phenotypes, which are informative for the development of personalized treatments for this disorder.  
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Introduction 

Major depressive disorder (MDD) is one of the most prevalent and burdensome psychiatric disorders 

worldwide, and it is accompanied by heterogeneous emotional, neurovegetative, and neurocognitive 

symptoms [1, 2]. This clinical diversity among patients brings up a huge challenge for disease 

diagnosis and the prediction of course trajectories and treatment responses. However, the underlying 

neurophysiological substrates of this clinical heterogeneity remain largely unclear. Parsing the 

neurophysiological heterogeneity is essential to better link complex biological dysregulations with 

clinical manifestations, thus facilitating optimized treatment allocation for patients. Prior studies 

have attempted to identify MDD subtypes based on clinical symptoms, such as melancholic 

depression, atypical depression, and seasonal affective disorder [3-5]. These studies showed 

neurophysiological differences between the clinical subtypes and indicated a possible relationship 

between specific depressive symptom profiles and biological dysregulations. However, clinical 

symptoms interact in a complex manner with biological substrates and may change over age and 

disease course, the neurophysiological informed subtyping of MDD is still lacking. Exploring 

neurophysiological subtypes of MDD is expected to provide a more objective understanding of the 

biological mechanisms underlying the disorder and inform the development of personalized 

biomarkers for clinical diagnosis and treatment. This will help advance our understanding of the 

complex clinical heterogeneity of MDD and improve its diagnosis and treatment in the future.  

Based on resting-state functional magnetic resonance imaging (r-fMRI), many case-control 

studies have documented the disrupted topological organization of the functional brain connectomes 

and identified several critical functional foci in MDD patients [6-9], which largely enhanced our 

understanding of the neurophysiological substrates of this disease. It is important to note that the 

results from the between-group comparisons in small-sample studies were largely inconsistent, and 
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the effect size was small in recent large-sample multisite studies, which suggests a large degree of 

heterogeneity in functional connectome alterations in MDD patients. This has recently led to increase 

focus on the heterogeneity of functional connectomes in MDD patients [10-12], with growing 

attention on the investigation of neurophysiological subtypes based on functional connectomes 

[13-17]. Studies have found important roles for functional connectomes of default mode networks 

(DMN), limbic systems (LIM), and subcortical regions (SUB) in neurophysiological subtyping. For 

example, Liang et al. [15] found hyperconnectivity of DMN areas in one subtype and 

hypoconnectivity in the other subtype. Drysdale et al. [14] defined four neurophysiological subtypes 

based on the distinct functional connectivity patterns in LIM and frontostriatal networks. These 

studies observed differences in clinical presentations and treatment response among 

neurophysiological subtypes, which indicates the promise of discovering clinically valuable 

neurobiological subtypes based on functional connectomes. However, previous studies have largely 

ignored the fact that the functional connectomes can change dramatically over the lifespan and that 

individual abnormal measurements, obtained from a typical change, can provide more accurate and 

disease-specific information for subtyping. This aspect holds promise for the future personalized 

diagnosis and treatment for a more general population of MDD. 

The normative model, a cutting-edge statistical framework that maps demographic or behavioral 

variables to a quantitative neuroimaging feature, has demonstrated its superiority in characterizing 

the expected change trajectory of neuroimaging features and identifying individual heterogeneous 

deviations from the norm [18-20]. Similar to the widely-used normative growth charts in pediatric 

medicine, where a child’s height or weight is compared to the normative distribution for that 

particular age and gender [21], the normative model can be used to evaluate individuals in relation to 

a neuroimaging normative feature at a particular age and gender. Recently, the normative model has 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528399doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528399
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

6 

 

 

gained increased attention in the field of psychiatric disorders, as it has been applied to characterize 

individual abnormalities and intersubject differences in neuroimaging features in disorders, such as 

autism [22-24], attention deficit/hyperactivity disorder [25], and schizophrenia [26]. Unlike the 

traditional case-control analysis that only provide information on group-level abnormities, the 

normative model takes into account intersubject differences within the patient and control groups and 

allows for measuring individual deviation from a large reference cohort. These individual deviations 

from the normative model are expected to complement the characterization of patients’ 

developmental abnormalities and aid in the detection of neurobiological subtypes with distinct 

biological dysregulations and clinical manifestations.  

In this study, we conducted a comprehensive investigation into the neurobiological 

heterogeneity and subtypes of MDD using a large multisite r-fMRI dataset of 1,148 patients with 

MDD and 1,079 matched healthy controls (HCs). We adopted a novel normative model framework, 

which allows us to estimate individual deviations from the lifespan trajectory of functional 

connectivity strength (FCS). Through the analysis of these deviations, we aimed to uncover the 

intersubject heterogeneity among patients with MDD and identify neurobiological subtypes based on 

their deviation patterns. The identified neurobiological MDD subtypes were evaluated in the context 

of demographic and clinical variable differences.  

 

Materials and methods 

Imaging dataset and preprocessing 

This study included 2,414 participants (1,276 patients with MDD and 1,138 HCs) from nine research 

centers through the Disease Imaging Data Archiving - Major Depressive Disorder Working Group 

(DIDA-MDD) [9]. All participants were diagnosed by experienced psychiatrists using structured 
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clinical interviews. The patients met the Diagnostic and Statistical Manual of Mental Disorders-IV 

(DSM-IV) diagnostic criteria for MDD [27] and had no other Axis I disorder. The clinical symptoms 

of patients were assessed using the 17-item Hamilton Depression Rating Scale (HDRS-17). The HCs 

had no current or lifetime history of an Axis I disorder. After strict quality control for both clinical 

and imaging data (Supplement), the final sample consisted of 1,148 patients with MDD (aged 11-93) 

and 1,079 HCs (aged 13-81) (Table 1 and Supplementary Fig. 1). Additionally, a subsample of 43 

patients (Supplementary Table 1) received a 6-month treatment with paroxetine (an antidepressant of 

selective serotonin reuptake inhibitor, SSRI), and the treatment outcomes were recorded 

(Supplement). This study was approved by the ethics committees of each research center. Written 

informed consent was obtained from all participants. All R-fMRI data of participants were obtained 

using 3.0-T MRI scanners. Detailed scanning parameters at each center are listed in Supplementary 

Table 2. R-fMRI data were then preprocessed using a standard pipeline as described in our previous 

work [9, 28] (Supplement).  

 

Functional connectivity strength analysis 

We first constructed a functional brain network for each participant. The network nodes were defined 

according to a predefined functional parcellation [29], including 220 cerebral regions that had 

qualified fMRI signals in all participants. The connectivity network was estimated by calculating 

Pearson’s correlation coefficients between the time series of any pairs of nodes followed by Fisher’s 

r-to-z transformation to improve normality. Then, the FCS values for each brain region was 

computed as the sum of the connectivity between a given region and all the other regions. Notably, 

we restricted our analysis to correlations above a threshold of r=0.2 to eliminate weak correlations 

possibly arising from noise, and the effects of different correlation thresholds on the results were 
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validated (Supplement). The whole-brain FCS values were further standardized using z score 

normalization (minus the mean and divided by the standard deviation) to ensure comparability across 

participants. Finally, combat harmonization was utilized to correct the site effects on the FCS values 

[9, 28, 30-32].  

 

Normative modeling for functional connectivity strength 

For each brain region, we estimated a normative model of FCS as a function of age and gender by 

using Gaussian process regression (GPR) [18] in the HCs (Fig. 1a and Supplement). GPR is a 

Bayesian nonparametric interpolation method that yields coherent measures of predictive confidence 

alongside point estimates [33]. In addition to fitting potentially nonlinear predictions of a brain 

feature, it can provide regional estimates of the expected variation in the relationship between age 

and brain features (normative variance) and estimates of uncertainty in this variance. The estimation 

of the normative models was performed using the PCNtoolkit package 

(https://github.com/amarquand/PCNtoolkit). To assess the generalizability of the models, we first 

estimated the normative models in the HCs under 10-fold cross-validation (Supplement), and overall 

standardized mean squared error and mean squared log-loss were used to evaluate the models. Then, 

the final normative models were trained on the whole HC dataset for the subsequent MDD deviation 

analyses.  

 

Estimating individual FCS deviations in normative models for MDD patients 

For each patient with MDD, the FCS of the brain regions were positioned on the normative 

percentile charts from HCs to estimate individual deviation (Fig. 1b). We derived a Z value that 

quantifies the deviation from the normative model in each brain region [18]. For a given MDD 
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patient i, the deviation Z value of a brain region j was calculated as follows:  

Z�� � y�� � y���
�σ��� � σ���

 

where y�� is the observed FCS value, y��� is the predictive FCS value, σ�� is the predictive 

uncertainty, and σ�� is the variance learned from the normative distribution n. The Z value provides 

a statistical estimate of how much each patient differs from the healthy pattern in each brain region. 

Thus, the individual deviation map of each patient was obtained. The influence of patient sites on the 

calculation of FCS deviations was assessed in the validation (Supplement). Similarly, the individual 

deviation map of each HC participant was estimated by computing the Z value of each brain region 

during 10-fold cross-validation. 

To further define the individual-level extreme deviations in the FCS of participants, we 

thresholded the deviation maps using Z = ± 2.6 (corresponding to a p<0.005) as was done in previous 

studies [25, 26, 34]. To quantify the overall extent of individual deviations, we calculated the number 

of brain regions with extreme deviations, the sum of positive extreme deviations, and the sum of 

negative extreme deviations for each participant. Then, to assess the intersubject heterogeneity of the 

deviations, we calculated a spatial overlap map by computing the percentage of participants who had 

an extreme deviation (Z > 2.6 or Z < -2.6) in each brain region. The between-group differences in the 

mean deviation map and the overall deviation indexes between patients with MDD and HCs were 

compared using two-sample t tests. The significance level was corrected for multiple comparisons 

using the FDR method (corrected p<0.05). The effect of different thresholds for defining extreme 

individual deviations on the results were validated (Supplement).  

 

Identifying MDD subtypes based on individual FCS deviations 
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We used a data-driven k-means clustering algorithm to explore MDD subtypes with different 

deviation patterns (Fig. 1c). The deviation map of each patient was set as the clustering feature, and 

the distance between any two patients was defined as the Euclidean distance between their deviation 

maps. The clustering algorithm was performed 10 times with different random initial cluster 

centroids to minimize the effect of the initial condition under each clustering number. The number of 

clusters was assessed from 2 to 10, and an optimal number of clusters was determined by a 

winner-take-all approach across 22 effective indexes using the NbClust package [35] (Supplement). 

To examine whether the MDD subtyping results were influenced by specific sites, we repeated the 

clustering analysis based on leave-one-site-out validation (Supplement). 

 

Characterizing subtype-related imaging and clinical differences  

To investigate the deviation patterns between subtypes, we calculated the mean deviation map of 

each subgroup and compared them at the network level (Supplement). The overall deviated levels, 

including the number of extremely deviated regions, the sum of positive extreme deviations, and the 

sum of negative extreme deviations were compared among subtypes and HCs using one-way 

analysis of variance. Post hoc analysis was performed to compare the deviation differences between 

every two groups using two-sample t tests. To assess whether the deviated regions became more 

consistent after subtyping, we calculated the spatial overlap maps of extreme deviation for each 

subtype and compared them with the overlap maps of all patients using two-sample t tests 

(Supplement). The significance level was corrected for multiple comparisons using the FDR method 

(corrected p<0.05). 

Group comparisons of demographic and clinical variables were performed on age, gender, 

disease duration, onset age, episode status, medication status, HDRS-17 total score, and HDRS-17 
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item scores using two-sample t tests or chi-square tests. Moreover, subtype differences in the 

association between the HDRS-17 total score and the duration/onset age were examined by using a 

one-way analysis of covariance (ANCOVA) with the duration/onset age as the predictor, the total 

HDRS-17 score as the response, and the subtypes as the grouping variable. The post hoc analysis 

was performed by calculating Pearson’s correlation coefficients between the HDRS-17 total score 

and the duration/onset age in each subtype. Support vector regression (SVR) was conducted to 

examine the prediction ability of deviation values for treatment response (i.e., changes in HDRS 

score) in patients. The baseline individual deviation values served as predictive features, and the 

model was validated using an embedded 5-fold cross-validation procedure and permutation tests 

(Supplement).  

 

Results 

Normative models of functional connectivity strength 

The 10-fold cross-validation in the HCs revealed a high generalizability of the fitting performance of 

normative models for FCS, as indicated by overall standardized mean squared error close to 1 (0.996

±0.013) and mean squared log-loss close to 0 (-0.001±0.007) (Supplementary Fig. 2). For the 

normative models established in the whole HCs, we found that the brain regions can be clustered 

(Supplement) into two categories according to their age-related FCS change trajectories in both 

female (Fig. 2a) and male groups (Supplementary Fig. 3). Specifically, regions with increased 

age-related FCS values were located mostly in the lateral frontoparietal cortices, dorsal anterior 

cingulate cortex, medial occipital cortices, sensorimotor areas, and subcortical areas, while those 

with decreased FCS were mainly in the precuneus, posterior cingulate cortex, medial prefrontal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.13.528399doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.13.528399
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

 

 

cortex, angular gyrus, insula, and medial temporal areas (Fig. 2a and Supplementary Fig. 3).  

 

Highly heterogenous individual deviations from normative models in patients with MDD 

Compared to the HCs, patients with MDD exhibited significantly larger individual FCS deviation 

indexes, including the number of extremely deviated regions (t=4.22) and the sum of positive (t=4.11) 

and negative (t=-2.77) extreme deviations (Fig. 2b, p<0.05, FDR corrected). Regionally, the patient 

group had significantly larger FCS deviations than the HC group, with positive deviations mainly in 

the bilateral lateral frontal cortex, precuneus, angular gyrus, and subcortical areas and negative 

deviations in the left parahippocampal gyrus, right Rolandic operculum, and middle cingulum gyrus 

(Supplementary Fig. 4 and Table 3, p<0.05, FDR corrected). A total of 72.82% (N=836) of the 

patients with MDD showed extreme FCS deviations from the normative model in at least one brain 

region, including extreme positive deviations in 25.78% (N=296) of patients and extreme negative 

deviations in 66.38% (N=762) of patients (Fig. 2c). From the perspective of brain regions, 99.55% 

(N=219) of the nodes showed an extreme FCS deviation in at least one patient, including extreme 

positive deviations in 67.73% (N=149) of brain regions and extreme negative deviations in 96.36% 

(N=212) of brain regions. The extreme positive deviations in patients with MDD were mostly 

located in the prefrontal cortex, precuneus, angular gyrus, and subcortical areas (Fig. 2d. left), and 

the extreme negative deviations were widespread over the whole brain, especially in the medial 

sensorimotor cortex and the temporal lobe (Fig. 2d. right). However, for any single brain region, the 

percentage of patients who deviated extremely from the normative range was remarkably low in 

either positive (≤2.35%, N=27) or negative (≤3.14%, N=36) deviations (Fig. 2d). These findings 

suggest that while alterations in FCS exist in most patients with MDD, the specific brain regions 

having out-of-range alterations varied remarkably among individual patients.  
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FCS deviation-based MDD subtypes 

The k-means clustering approach identified two MDD subtypes based on individual FCS deviations. 

This optimal subcluster number was consistently selected by 11 of 22 effective quality indexes (Fig. 

3a). Patients with subtype 1 (37%, N=425) showed a severe deviation with positive deviations in the 

DMN, LIM, and SUB areas and negative deviations in the sensorimotor (SMN), dorsal attention 

(DAN), and ventral attention (VAN) areas (Fig. 3b and Supplementary Table 4, p<0.05, FDR 

corrected). However, the deviations observed in patients with subtype 2 (63%, N=723) were 

moderate, and the deviation patterns were significantly different, with negative deviations in the 

DMN, LIM, and SUB areas and positive deviations in the SMN, DAN, and VAN areas (Fig. 3b and 

Supplementary Table 4, p<0.05, FDR corrected). Statistical comparisons showed that the number of 

extremely deviated regions, the sum of positive extreme deviations, and the sum of negative extreme 

deviations observed in subtype 1 patients were significantly higher than those observed in HCs and 

subtype 2 patients, while the number of extremely deviated regions and the sum of negative extreme 

deviations observed in subtype 2 patients were significantly lower than those observed in HCs (Fig. 

3c and Supplementary Table 5, p<0.05, FDR corrected). From the spatial overlap maps of extreme 

deviations, we observed a significantly higher consistency of extremely deviated regions among 

patients with the severe-deviation subtype compared to that among all patients (positive: 0.23-4.71%, 

t=3.31; negative: 0.23-5.88%, t=3.66; p<0.05, FDR corrected) and a significantly lower consistency 

among patients with the moderate-deviation subtype (positive: 0.13-2.49%, t=-3.26; negative: 

0.13-1.80%, t=-3.79; p<0.05, FDR corrected) (Fig. 3d).  

Regarding demographic and clinical variables, patients with the severe-deviation subtype were 

significantly older (t=2.64, p=0.008) and had a higher medicated proportion (χ2=6.11, p=0.013) than 
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patients with the moderate-deviation subtype (Fig. 4a and Supplementary Table 6). Patients with the 

severe-deviation subtype had more severe symptoms in the Suicide item (t=2.02, p=0.044), while 

patients with the moderate-deviation subtype exhibited more severe symptoms in the Work and 

Activities (t=3.11, p=0.002) and Depressed Mood items (t=2.42, p=0.016) (Fig. 4a and 

Supplementary Table 6). Moreover, ANCOVA showed that the correlations between the HDRS-17 

score and the onset age were significantly different between the two subtypes (F=4.41, p=0.037) 

(Supplementary Table 7-8). The HDRS-17 score was negatively correlated with onset age in patients 

with the severe-deviation subtype (r=-0.24, p=0.004) but not in patients with the moderate-deviation 

subtype (r=-0.00, p=0.966) (Fig. 4b).  

Among the patients who had follow-up treatment outcomes, 16 patients were clustered into the 

severe-deviation subtype and the other 27 patients were clustered into the moderate-deviation 

subtype. The baseline individual deviation map could significantly predict HDRS score changes after 

treatment for patients with the severe-deviation subtype (r=0.47, p=0.019, one-tailed permutation test, 

Fig. 4c). The most positively contributive features were located in the DMN (24.1%), FPN (16.1%), 

and VAN (15.6%), and the most negatively contributive features were in the VIS (40.5%) (Fig. 4c). 

In contrast, the baseline deviation map of the moderate-deviation subtype could not predict their 

HDRS score changes (r=-0.14, p=0.785, one-tailed permutation test).  

 

Validation results 

Overall, the findings reported above were generally reproducible across different analytical choices. 

Under different thresholds in FCS calculation (r=0.15, 0.25), the normative models and patient 

deviations were similar to our main results, the overlap rates of the resulting subtype indexes with 

the clustered indexes in the main results were >96%, and the subtype differences largely remained 
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(Supplementary Fig. 5-6 and Supplement). When different threshold was used to define extreme 

deviations (FDR p<0.05), the spatial overlap maps were slightly sparser, but the specific brain 

regions affected by MDD still varied markedly among individual patients (Supplementary Fig. 7). 

There were no significant site-related effects in the deviation values of all the brain regions (FDR p: 

0.183~0.100). The overlap rates of the resulting clustered indexes in the leave-one-site-out validation 

with the clustered indexes in the main results were all >92%, and the subtype differences were 

largely unchanged (Supplementary Fig. 8 and Table 9).  

 

Discussion 

In this study, we uncovered the neurophysiological heterogeneity and subtypes of patients with MDD 

through mapping deviations from the normative models of functional connectome, by leveraging the 

currently largest R-fMRI dataset in MDD. Our findings reveal a significant intersubject variability in 

the spatial distribution of functional connectome abnormalities among MDD patients. Furthermore, 

our results highlight not only differences in the spatial distribution of functional connectome 

abnormalities but also significant disparities in demographic and clinical characteristics between the 

two identified neurobiological subtypes of MDD. Together, our study offers a novel analytical 

framework for subtyping MDD and offers promising implications for future personalized diagnosis 

and treatment of this disorder. 

 

Normative models of functional connectivity strength  

Recently, several studies have estimated the normative model of brain structural features based on 

GPR, including cortical thickness, surface area, gray matter volume, white matter volume, and 

subcortical volume, and described the linear or nonlinear change trajectories of structures with age 
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[23-26]. Compared to the traditional general linear model, the novel framework normative model 

does not require assumptions about the change trajectories and provides a useful tool to characterize 

any nonlinear changes in features. Here, based on a large sample dataset, we estimated the normative 

model of FCS for each brain region and found increased FCS values against age mostly in the lateral 

frontoparietal cortices, dorsal anterior cingulate cortex, medial occipital cortices, sensorimotor areas, 

and subcortical areas and decreased FCS mainly in the precuneus, posterior cingulate cortex, medial 

prefrontal cortex, angular gyrus, insula, and medial temporal areas. Similar to our findings, several 

previous studies found linear-age-related FCS decreases in the medial prefrontal cortex, precuneus, 

insula, and calcarine and linear FCS increases in sensorimotor areas based on the general linear 

model [36-38]. The areas of FCS decrease are the prominent hubs of global and local functional 

connectivity, and the age-related decrease could underlie the performance decline in working 

memory and visual sustained attention, which are the most affected cognitive functions that occur 

with aging [39-41]. Conversely, the sensorimotor areas are the least affected by aging [36]. These 

age-related changes in our study support the developmental theory which postulates that the first 

regions to emerge phylogenetically and ontogenetically are the most resistant to age effects, and the 

last ones are the most vulnerable. Notably, in our study, although brain regions had overall increased 

or decreased change trajectories, the changes did not always follow a linear or quadratic change, 

which demonstrates the high value of the normative model in characterizing the natural FCS change 

trajectories more accurately. 

 

Highly heterogenous individual deviations from normative models in MDD patients 

In contrast to the case-control analysis identifying group-averaged alterations for patients, the 

normative model allows individual measures of the extent of patients’ deviation from a large 
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reference cohort. Importantly, the model can recognize all sources of variance and reduce overly 

optimistic inferences and thus obtain more accurate and patient-specific individual deviations for 

patients. Given its great advantage, the normative model has recently been used to characterize the 

individual abnormalities and intersubject differences in neuroimaging features in multiple psychiatric 

disorders, such as autism [22-24], attention deficit/hyperactivity disorder [25], and schizophrenia 

[26]. Here, based on the normative model, our study investigated the individual FCS deviations for 

each patient and explored the heterogeneity of FCS deviations among patients. We found positive 

FCS deviations mainly in the DMN and SUB areas and negative deviations mainly in the 

sensorimotor and lateral temporal cortices. The FCS alterations in these regions have been proven to 

be related to the regulation of widespread cognitive, emotional, and executive control functions in 

patients with MDD [6, 42-50]. More importantly, we found that the overlap rates among patients in 

these regions were very low. This huge heterogenous among patients provides an important reference 

for the explanation of inconsistent results in prior functional connectome studies in MDD. For 

example, the medial prefrontal cortex showing heterogenous FCS alterations in our study was found 

to have both increased and decreased FCS in previous case-control studies [47, 51-53]. Our results 

suggest that FCS alteration is an important neuropathological feature of MDD, while the alteration 

patterns among patients are largely different and there might be multiple forms of MDD. Also, these 

findings reflect the useful application of normative model of functional connectome for identifying 

individual abnormities and parsing heterogeneity of MDD.  

 

FCS deviation-based MDD subtypes 

Based on the individual FCS deviation pattern from normative models, we clustered MDD patients 

into two subtypes with distinct deviated levels and patterns. The FCS deviations in the DMN, LIM, 
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SUB, SMN, DAN, and VAN exhibited significant differences and opposite alterations between the 

two subtypes, and the DMN showed the most. Consistent with the distinct DMN alterations in our 

study, several previous studies focusing on the local functional connectivity of the DMN or based on 

a small-sample dataset identified the different MDD subtypes with different functional connectivity 

patterns in the DMN areas [15, 54]. A transdiagnostic study, based on the whole brain amplitude of 

low-frequency fluctuations (ALFF), also clustered MDD patients into two subtypes with distinct 

activity patterns similar to our results [55]. Combined with these findings, our results indicate that 

the functional connectome and activity of DMN areas are important biomarkers for the 

neurophysiological subtyping of MDD. Among patients with MDD, there might be different 

disruption directions in DMN areas, some of them showed over-integration and increased activities 

in these areas, while the connectome and activities of these areas of other patients may not enough to 

support their normal functions. The different alteration patterns may result from complex genetic and 

environmental effects, which need to be further analyzed. 

We found that the patients of the severe-deviation subtype showed more severe symptoms in the 

Suicide item score on the HDRS-17. Studies have shown that the increased functional connectomes 

and activities of the DMN and LIM areas are related to suicide, including the orbitofrontal cortex, 

medial prefrontal cortex, cingulate cortex, and striatum [56-59]. The orbitofrontal cortex is involved 

in learning, prediction, and decision-making for emotional and reward-related behaviors and is 

important in the regulation of behavioral impulsivity and response inhibition [60]. The higher FCS in 

the orbitofrontal cortex might be related to the increased vulnerability to suicidal behavior. The areas 

of the DMN are related to self-referential processing. Increasing evidence suggests that alterations in 

self-referential thinking may be associated with suicidal behavior [61]. When individuals are 

involved in regurgitating negative emotions about themselves, suicidal thoughts and behaviors occur 
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in response to the individual’s desire to escape from both self-awareness and the associated 

unpleasant feelings [59]. On the other hand, the decreased functional connectomes in areas of the 

DMN and LIM are considered to be related to anhedonia [62-68], which is defined as diminished 

interest or pleasure in response to stimuli that were previously perceived as rewarding during a 

premorbid state [63]. Our results provide new evidence that the decreased FCS in the DMN and the 

LIM is related to the nonreactive mood and the failure to react to contextual changes in patients with 

MDD. More importantly, we found the predictive power of FCS deviation patterns for treatment 

effects in the severe-deviation subtype but not found in the other subtype. Studies have found that the 

recovery of increased DMN FCS has significant correlations with the treatment response [53], while 

decrease DMN FCS was associated with non-response to first-line antidepressants [15]. Together, the 

neurophysiological subtypes in our studies illuminated the different mechanisms underlying different 

clinical profiles and treatment responses among patients.  

Patients with the severe-deviation subtype were older than patients with the moderate-deviation 

subtype. Previous studies have found different alteration patterns between patients in different age 

stages. Similar to the alteration patterns in our results, studies of late-life depression showed 

increased FCS in the inferior parietal lobule and parahippocampal gyrus and decreased FCS in the 

somatosensory and motor cortices compared to HCs [69]. The alterations in these areas might be 

related to the increased negative self-focused thought, impaired visuospatial and episodic memory, 

poor sleep quality, and deficits in physical health and functions in late-life patients. Moreover, 

evidence has shown that brain resilience increases during development and early adulthood and then 

decreases during aging [70]. Thus, the ability of the brain to withstand disease may decrease and thus 

experience more severe alterations in older patients. Additionally, a significant negative correlation 

between the onset age and HDRS-17 score was found only in the severe-deviation subtype. Several 
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studies have explored the association between the onset age and HDRS-17 score in patient with 

MDD, but the results were inconsistent [71-74]. Our results indicated that these inconsistent 

observations may be contributed by different patient subtypes. Notably, in line with our findings, a 

study found that the onset age was negatively correlated with the cognitive-behavioral cluster of 

HDRS (including Suicide and Guilt item scores) but not with the affective cluster of HDRS 

(including Depressed Mood and Work and Activities item scores) [72]. In the severe-deviation 

subtype, the early-onset patients may disrupt the normal brain maturation, and thus leading to more 

severe symptoms of Suicide item. In the moderate-deviation subtype, the FCS alterations might be 

related to the higher symptoms in the Work and Activities and Depressed Mood items, which have 

lower effects with onset age.  

 

Limitations and future directions 

Several issues with the current study need to be further addressed. First, our analysis was performed 

based on a cross-sectional sample. The age-related change trajectories shown here do not represent 

the trajectories of each participant, and they reveal age-specific population-level means and 

individual variabilities. Adding longitudinal samples will improve the representativeness of the brain 

change curve models. Second, in this study, we compared the subtype differences in clinical 

symptoms using HDRS-17 item scores. The patients with MDD also had varied cognitive 

impairments, which were not collected in the current retrospective study. Further analysis combined 

with more detailed cognitive performances could help us to better understand the complex 

relationship between the neurophysiological basis and the clinical presentations of MDD. Third, all 

the patients who were included in the analysis to predict treatment outcomes were responders to 

paroxetine, given that patients who had a poor response discontinued the medication or changed their 
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treatment plans. Future studies need to include more nonresponders to establish prediction models 

for treatment-resistant depression and thus explore the different neuroimaging biomarkers between 

patients with different treatment outcomes. Finally, we identified MDD subtypes based on the 

heterogenous FCS alteration patterns of patients. An episode of MDD may be caused by numerous 

different factors, such as genetic liability, childhood adversity, and life stress [75-77]. Future studies 

combined with more genetic and environmental information are needed to investigate the factors that 

lead to the different neurophysiological subtypes.  
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Figure legends 

 
Fig. 1 Flowchart of data analysis. a Estimation of the normative model of FCS for each brain region 
by training Gaussian process regression on the whole HCs dataset (gray dots). The solid line 
represents the predicted FCS values from the normative model, and the dashed line indicates the 
normative range. Ten-fold cross-validation were performed to assess the generalizability of the 
models. b Characterization of the FCS deviation of each brain region for each MDD patient (red dots) 
based on the normative model. c Identification of MDD subtypes based on the individual FCS 
deviation patterns and characterization of their imaging and clinical differences. GPR, Gaussian 
process regression; FCS, functional connectivity strengths; HCs, healthy controls; MDD, major 
depressive disorder. 
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Fig. 2 Normative models established in HCs and individual deviations from normative models in 
MDD patients. a The brain map in the middle indicates the two categories of age-related FCS change 
trajectories (purple: increased; blue: decreased) in HCs (female). The FCS change trajectories (solid 
line) and the normative range (dashed line) of postcentral gyrus and posterior cingulate cortex are 
shown on the left and right as examples. Each dot represents the data from one HC. b The 
between-group differences of the overall deviation indexes between patients with MDD and HCs. 
**p<0.05, FDR corrected. c Bar plots show the distribution of the number of regions per patient with 
extremely positive (red) and negative (blue) deviations. d The spatial overlap maps indicate the 
percentage of patients who deviated extremely from the normative range for each brain region (left, 
extreme positive deviations; right, extreme negative deviations). FCS, functional connectivity 
strength; HCs, healthy controls; MDD, major depressive disorder. 
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Fig. 3 FCS deviation-based MDD subtypes. a Determination of the optimal number of MDD 
subtypes using the NbClust package and the intersubject similarity in the FCS deviation patterns 
among patients. b The mean deviation map of each subtype and their system-level differences. c The 
group differences in the overall deviation indexes among MDD subtypes and HCs. d The spatial 
overlap map of extreme positive and negative deviations of each subtype. VIS, visual network; SMN, 
sensorimotor network; DAN, dorsal attention network; VAN, ventral attention network; LIB, limbic 
network; FPN, frontoparietal network; DMN, default mode network; SUB, subcortical regions; HCs, 
healthy controls; MDD, major depressive disorder; **p<0.05, FDR corrected. 
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Fig. 4 Subtype differences in demographic and clinical variables. a Subtype differences in age, 
medicated proportion, and HDRS-17 item score. *p<0.05. b The correlation between the HDRS-17 
total score and the onset age in each subtype. Each dot represents the data from one patient. c The 
prediction ability of deviation values for treatment response in patients of the severe-deviation 
subtype. The scatter plot presents the correlation between the observed HDRS score change after 
treatment and the predicted HDRS score change derived from the SVR. Each dot represents the data 
from one patient, and the dashes indicate the 95% prediction error bounds. The summed weights in 
5-fold cross-validation were mapped onto the brain surface. The radar map represents the distribution 
of predictive power in different systems (red: positive; blue: negative). HDRS, Hamilton Depression 
Rating Scale; SVR, support vector regression; VIS, visual network; SMN, sensorimotor network; 
DAN, dorsal attention network; VAN, ventral attention network; LIB, limbic network; FPN, 
frontoparietal network; DMN, default mode network; SUB, subcortical regions. 
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Tables 

Table 1. Demographic and clinical characteristics of the participants. 

Center Group Age, mean 
(SD), yr 

Gender 
(M/F) 

Duration 
of Illness, 
mean 
(SD), yr 

Episode 
(First/Rec
urrent) 

Medicate
d 
(Yes/No) 

HDRS-17, 
mean (SD) 

Age at Illness 
Onset, mean(SD), 
yr 

Mean FD, 
mean (SD), 
mm 

CMU, Patients 
(N=125) 

27.91 (9.70) 39/86 1.65 
(3.17) 

100/11 49/76 21.44 
(8.67) 

26.36 (9.93) 0.115 (0.072) 

Shenyang Controls 
(N=248) 

27.25 (8.22) 103/145      0.107 (0.057) 

 t or χ2/P 0.69/0.493 3.76/0.052      1.09/0.278 
          
CSU, Patients 

(N=177) 
36.28 
(10.21) 

77/100 2.83 
(3.95) 

N.A.  N.A. 23.24 
(5.91) 

30.97 (8.43) 0.141 (0.073) 

Changsha Controls 
(N=108) 

32.31 (7.96) 62/46      0.134 (0.064) 

 t or χ2/P 3.45/0.001 5.19/0.023      0.90/0.371 
          
GCMU1, Patients 

(N=34) 
29.41 (8.27) 9/25 0.65 

(0.70) 
34/0 0/34 21.85 

(2.25) 
N.A. 0.094 (0.030) 

Guangzho
u 

Controls 
(N=34) 

30.09 
(10.88) 

10/24      0.096 (0.033) 

 t or χ2/P -0.29/0.774 0.07/0.787      -0.26/0.797 
          
GCMU2, Patients 

(N=66) 
29.48 (9.91) 25/41 0.76 

(1.00) 
66/0 0/66 22.30 

(3.57) 
N.A. 0.089 (0.057) 

Guangzho
u 

Controls 
(N=66) 

29.33 
(10.12) 

31/35      0.086 (0.042) 

 t or χ2/P 0.29/0.774 1.12/0.291      0.29/0.770 
          
KMU, Patients 

(N=41) 
34.20 (9.37) 20/21 1.13 

(1.28) 
N.A. N.A. 23.61 

(4.64) 
N.A. 0.186 (0.083) 

Kunming Controls 
(N=46) 

39.02 
(12.20) 

26/20      0.166 (0.065) 

 t or χ2/P -2.05/0.043 0.52/0.470      1.25/0.216 
          
PKU, Patients 

(N=75) 
31.51 (7.86) 44/31 0.52 

(0.47) 
75/0 0/75 25.35 

(4.77) 
30.99 (7.91) 0.175 (0.063) 

Beijing Controls 
(N=73) 

31.90 (9.01) 42/31      0.185 (0.067) 

 t or χ2/P -0.29/0.775 0.02/0.889      -0.91/0.362 
          
SCU, Patients 

(N=48) 
35.75 
(12.22) 

23/25 1.13 
(1.49) 

28/19 23/25 22.88 
(4.25) 

35.17 (12.65) 0.111 (0.067) 

Chengdu Controls 
(N=41) 

34.83 
(17.69) 

17/24      0.122 (0.072) 

 t or χ2/P 0.29/0.773 0.37/0.542      -0.72/0.473 
          
SWU, Patients 

(N=282) 
38.74 
(13.65) 

99/183 4.20 
(5.52) 

209/49 124/125 20.94 
(5.60) 

N.A. 0.125 (0.054) 

Chongqin
g 

Controls 
(N=254) 

39.65 
(15.80) 

88/166      0.134 (0.063) 

 t or χ2/P -0.72/0.472 0.01/0.911      -1.68/0.094 
          
YMU, Patients 

(N=105) 
57.05 
(16.21) 

63/42 1.21 
(1.54) 

N.A. 79/26 11.23 
(6.46) 

43.08 (15.30) 0.139 (0.082) 

Taipei Controls 
(N=109) 

51.12 
(11.70) 

69/40      0.128 (0.058) 

 t or χ2/P 3.06/0.003 0.25/0.619      1.18/0.240 
          
ZZU, Patients 18.40 (5.54) 97/98 1.29 N.A. 0/195 22.43 N.A. 0.100 (0.045) 
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(N=195) (1.48) (5.70) 
Zhengzho
u 

Controls 
(N=100) 

22.43 (4.49) 47/53      0.088 (0.039) 

 t or χ2/P -6.29/<0.001 0.20/0.655      2.16/0.032 
          
All data Patients 

(N=1148) 
33.83 
(14.97) 

475/673 2.10 
(3.60) 

512/79 277/622 21.31 
(6.77) 

32.74(12.37) 0.125 (0.067) 

 Controls 
(N=1079) 

33.96 
(13.87) 

466/613      0.123 (0.063) 

 t or χ2/P -0.21/0.832 0.75/0.387      0.80/0.423 

Note: The GCMU1 and GCMU2 datasets were collected using the same scanner at one site with 
different scan parameters. 

Abbreviations: SD, standard deviation; M, male; F, female; HDRS, Hamilton Depression Rating 
Scale; FD, framewise displacement; CMU, China Medical University; CSU, Central South 
University; GCMU, Guangzhou University of Chinese Medicine; KMU, Kunming Medical 
University; PKU, Peking University; SCU, Sichuan University; SWU, Southwest University; YMU, 
National Yang-Ming University; ZZU, Zhengzhou University; N.A., not available. 
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