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Anxiety is a multidimensional construct that includes stable trait anxiety and momentary state anxiety, which
have a combined effect on our mental and physical well-being. However, the relationship between intrinsic
brain activity and the feeling of anxiety, particularly trait and state anxiety, remain unclear. In this study, we
used resting-state functional magnetic resonance imaging (fMRI) (amplitude of low-frequency fluctuations
(ALFF) and regional homogeneity (ReHo)) to determine the effects of intrinsic brain activity on stable inter-
individual trait anxiety and intra-individual state anxiety variability in a cross-sectional and test–retest study.
We found that at both time points, the trait anxiety scorewas significantly associatedwith intrinsic brain activity
(both the ALFF and ReHo) in the right ventral medial prefrontal cortex (vmPFC) and ALFF of the dorsal anterior
cingulate cortex/anterior midcingulate cortex (dACC/aMCC). More importantly, the change in intrinsic brain
activity in the right insula was predictive of intra-individual state anxiety variability over a 9-month interval.
The test–retest nature of this study's design could provide an opportunity to distinguish between the intrinsic
brain activity associated with state and trait anxiety. These results could deepen our understanding of anxiety
from a neuroscientific perspective.

© 2016 Published by Elsevier Inc.
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Anxiety refers to feelings of fear, worry, and unease caused by
external or internal potential threats (Grupe and Nitschke, 2013;
Calvo and Dolores Castillo, 2001). The responses to the potential threats
have been shown to exhibit stable individual characteristics (Andrews
and Thomson, 2009; Etkin et al., 2004). To some extent, higher
sensitivity to anxiety places individuals at greater risk of developing
psychopathology and physical illness (Bower et al., 2010; Hoge et al.,
2011; McNally, 2002). Interestingly, anxiety is a multifaceted construct
that includes stable trait anxiety and momentary state anxiety
(Spielberger 1983, 2010). Trait and state anxiety are related but
separate psychological measures that have fairly distinct influences on
individual cognitive processes, such as attention and cognitive control
(Bishop, 2007; Bishop et al., 2007; Bishop, 2009; Crocker et al., 2012;
Hur et al., 2015; Pacheco-Unguetti et al., 2010). However, previous
studies on this subject have mainly employed task fMRI, and the
relationship of intrinsic brain activity with the feeling of anxiety,
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particularly with trait and state anxiety, remain unclear. Previous
studies have mainly explored the brain mechanisms of state and trait
anxiety using cross-sectional designs. Few studies have directly
explored the differences in intrinsic brain activity related to trait and
state anxiety. Therefore, in this study, we used resting-state fMRI (the
amplitude of low-frequency fluctuations (ALFF) and regional homoge-
neity (ReHo)) to explore the role of intrinsic brain activity in trait and
state anxiety variability.

A previous test–retest studyhas proposed that trait and state anxiety
variability is based on both stable intra-individual variability and inter-
individual variability (MacDonald et al., 2006; Wang et al., 2012; Zuo
and Xing, 2014). Trait anxiety is relatively stable and may reflect
inter-individual variability among personalities. An individual's trait
anxiety level may be correlated with the differences in several brain
regions (Barnes et al., 2002; Bieling et al., 1998). On the other hand,
state anxiety exhibits changes that partially reflect intra-individual
variability (Bechara and Naqvi, 2004; Birtchnell, 2002). Therefore, a
test–retest study could provide an opportunity to distinguish between
the intrinsic brain activity associated with state and trait anxiety. In
addition, resting-state fMRI has become a potentially useful tool for
understanding the functions of the human brain due to its low cost
and lack of a task-based performance requirement (Lee et al.,
2013; Liu et al., 2012; Sheline and Raichle, 2013). In particular, the
ediction of changes in state anxiety using functional brain imaging: A
age.2016.03.024
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relationships of regional activity amplitude and local functional connec-
tivity with the feeling of anxiety remain unclear. Therefore, this study
focused on the ALFF and ReHo, which are two important indicators of
resting-state fMRI (Yuan et al., 2013; Zang et al., 2007; Zou et al.,
2009). Specifically, the ALFF measures the magnitude of regional
activity amplitude, and it reflects the intensity of regional spontaneous
brain activity (Zang et al., 2007). ReHo measures the similarity in the
time series of a given voxel to its nearest neighbors, which reflects the
coherence of spontaneous neuronal activity (Zang et al., 2004). It has
been shown that both ALFF and ReHo have high test–retest reliability
(Küblböck et al., 2014; Zuo et al., 2010, 2013), and they are widely
used in studies of both healthy and clinical populations (Zhang et al.,
2015; Han et al., 2011; Kong et al., 2015; Liu et al., 2014).

Neuroimaging studies of anxiety have primarily focused on the
limbic regions (e.g., amygdala and insula), prefrontal cortex, and anterior
cingulate cortex (ACC) (Blackmon et al., 2011; Baur, 2012; Shang et al.,
2014; Sladky et al., 2013; Spampinato et al., 2009). Meta-analysis of
voxel-based morphometry (VBM) studies of anxiety disorders has
revealed evidence that the graymatter volumes in the anterior cingulate
gyrus and prefrontal cortex are abnormal in patients with anxiety
disorders (Shang et al., 2014). In addition, the structures of distributed
neural networks, including those of the amygdala, posterior cingulate
cortex, andmedial and dorsolateral PFC, have been found to be correlat-
ed with the anxiety level in healthy volunteers (Blackmon et al., 2011;
Spampinato et al., 2009). Further, functional neuroimaging studies
have examined the functions of limbic regions, the prefrontal cortex
and the cingulate gyrus in social anxiety disorder (SAD) (Zhang et al.,
2015) and in association with healthy individuals' anxiety-related traits
(Sehlmeyer et al., 2011; Zald et al., 2002). Notably, changes in state
anxiety to some extent reflect emotional changes caused by the aware-
ness of feelings in the body (Bechara and Naqvi, 2004; Birtchnell,
2002). Studies of the awareness of internal body states have consistently
indicated that the insula plays a central role in sensing information about
the body state and then integrating it to generate a subjective affective
experience (Craig, 2003, 2009, 2011; Ernst et al., 2013; Khalsa et al.,
2009; Terasawa et al., 2013a).

Therefore, in this study, we sought to identify the intrinsic brain
activity associated with state and trait anxiety by determining the
ALFF and ReHo in a cross-sectional and test–retest study based on a
large healthy sample (n = 114). For this purpose, we first analyzed
the cross-sectional relationships of maps of the ALFF and ReHo with
trait anxiety at thefirst time point in the sample of 114 subjects. Second,
we compared the correlation maps of the ALFF and ReHo and trait
anxiety at the second time point to verify the reliability of the results
obtained from the first time point using the same group. Finally, the
test–retest design allowed us to examine whether changes in the ALFF
and ReHo in specific brain regions over time predict intra-individual
state anxiety variability. Based on the above mentioned study results
(Baur, 2012; Shang et al., 2014; Blackmon et al., 2011; Sladky et al.,
2013; Talati et al., 2013; Zhang et al., 2015), we hypothesized that
individual differences in trait anxiety would be stably correlated with
theALFF and ReHovariability in brain regions such as the limbic regions,
prefrontal cortex, and ACC and that the intrinsic brain activity in the
insulamight effectively predict intra-individual state anxiety variability.

Methods

Participants

The participants were healthy college students attending Southwest
University (China) who were involved in this study as part of a larger
longitudinal study assessing brain imaging, creativity and mental
health. Particularly, our resting-state fMRI data sets are part of the
Consortium for Reliability and Reproducibility (CoRR) (Zuo et al.,
2014). First, they provided written informed consent prior to the
study, which was approved by the Institutional Human Participants
Please cite this article as: Tian, X., et al., Assessment of trait anxiety and pr
test–retest study, NeuroImage (2016), http://dx.doi.org/10.1016/j.neuroim
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Review Board of the Southwest University Imaging Center for Brain
Research. Then, all participants were screened using a Structured
Clinical Interview for DSM-IV by two well-trained and experienced
graduate students at the Department of Psychology. Thus, participants
whomet theDSM-IV criteria for any psychiatric disorder or neurological
disease or condition who were not suitable for scanning, were on
medication that can alter brain function, or had a history of loss of
consciousness, head trauma, pregnancy, or breast-feeding, were
excluded. At the first time point (Time 1), 561 participants consented
to participate in this study and underwent fMRI. At approximately 9
months after the first examination, the participants were invited for
follow-up examination (Time 2). However, only 114 participants com-
pleted the scans both at the Time 1 and Time 2, related questionnaires
and screening. Therefore, we included 114 participants in this study.

Behavioral assessments

Each participant was evaluated based on his or her level of anxiety
using the State Trait Anxiety Inventory (STAI) and the self-rating
anxiety scale (SAS). The STAI is a self-report questionnaire that consists
of 40 items for measuring two dimensions of anxiety: state anxiety
(A-State) and trait anxiety (A-Trait) (Spielberger, 1983, 2010). The
A-Trait scale consists of 20 statements that describe how people
generally feel that are rated on a 4-point intensity scale, and it captures
the dimensions of personality linked to anxiety. This A-State scale
assesses the feelings of people at a particular moment, and it is affected
by temporary conditions. The STAI is valued for its high reliability based
on its internal consistency and test reliability scores ranging from 0.73
to 0.86 across multiple samples (Spielberger, 1983). For the STAI,
Cronbach's alpha coefficient for internal consistency in our sample is
acceptable (A-State: αTime 1 = 0.88, αTime 2 = 0.89; A-Trait: αTime 1 =
0.83, αTime 2 = 0.88). The Chinese version of the STAI could be regarded
as an objective tool for measuring anxiety in the Chinese population,
and the factor analytic data tended to support Spielberger's conception
of themultidimensional natures of the A-State and A-Trait scales (Li and
Lopez, 2004; Shek, 1988). The self-rating anxiety scale (SAS) is a
20-item scale used to measure the frequency of anxiety symptoms. It
addresses 15 somatic and 5 affective symptoms that are linked to
anxiety (Zung, 1971). It is a 4-point scale, with each response ranging
from ‘none of the time’ to ‘most of the time’. Examples of SAS items
are as follows: ‘My arms and legs shake and tremble’ (somatic
symptoms) and ‘I feel more nervous and anxious than usual’ (affective
symptoms). The SAS is considered to be a sensitive and ecologically
valid measure, and it has shown adequate internal consistency in
normal college students (a = 0.81) (Olatunji et al., 2006) and good
test–retest reliability in a clinical sample of agoraphobics over a period
ranging from 1 to 16 weeks (r values = 0.81–0.84) (Michelson and
Mavissakalian, 1983). For the SAS, Cronbach's alpha coefficient for inter-
nal consistency in our sample is acceptable (αTime 1 = 0.76, αTime 2 =
0.79), and the Chinese version of this scale has been validated and has
been shown to have acceptable construct validity for measuring anxiety
in the Chinese population (Tao and Gao, 1994; Wei et al., 2014).

Resting-state fMRI data acquisition

Resting-state fMRI images were acquired using a 3.0-T Siemens Trio
MRI scanner (Siemens Medical, Erlangen, Germany) at the Brain
Imaging Research Center of Southwest University, Chongqing, China.
Whole-brain resting-state functional images were acquired using a
gradient-echo echo-planar imaging (EPI) sequence, with the following
parameters: slices = 32; TR/TE = 2000/30 ms; flip angle = 90°; field
of view = 220 mm × 220 mm; thickness/slice gap = 3/1 mm; and
matrix = 64 × 64, resulting in a voxel with 3.4 × 3.4 × 3 mm3. As a
result, 242 functional volumes were acquired for each participant.
During resting-state fMRI scanning, the participants laid in the supine
position with their heads comfortably positioned within a 1-channel
ediction of changes in state anxiety using functional brain imaging: A
age.2016.03.024
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birdcage head coil, which was padded with foam to minimize head
movement. Earplugs were used to reduce the influence of scanner
noise. All subjects were instructed to relax, keep their eyes closed, and
stay awake.

Data preprocessing

The resting-state image data were analyzed using data processing
assistant for resting-state (DPARSF) software (http://www.restfmri.
net) (Song et al., 2011; Yan and Zang, 2010). This toolbox is based on
the SPM8 software package. The first 10 volumes of the functional
images were discarded to account for signal equilibrium and the
participants' adaptation to their immediate environment. The remain-
ing 232 scans were corrected for slice timing, and then realigned to
the middle volume to correct for head motion. Participant with head
motion exceeding 3.0 mm in any dimension throughout the course of
scans was discarded from further analysis. Subsequently, registered
images were spatially normalized to Montreal Neurological Institute
(MNI) template (resampling voxel size = 3 × 3 × 3 mm3). After the
spatial smoothing (full width at half maximum = 6 mm Gaussian
kernel) (for ALFF except for ReHo), linear trend of the time series was
removed. Next, nuisance signals representing motion parameters,
white matter, and cerebrospinal fluid signals were regressed out in
order to control the potential impact of physiological artifacts. Here,
we used the Friston 24-parameter model (6 motion parameters, 6
temporal derivatives, and their squares) (Friston et al., 1996;
Satterthwaite et al., 2013) to regress out head motion effects. This
approach is based on recent research demonstrating that higher-order
models are more effective at reducing the effects of head movements
(Power et al., 2012; Yan et al., 2013).

ALFF analysis

ALFF measures the magnitude of regional activity amplitude, and it
reflects the intensity of regional spontaneous brain activity (Zang
et al., 2007). The procedure for calculating the ALFF was based on the
previous studies (Dai et al., 2012; Song et al., 2011; Yan and Zang,
2010; Wang et al., 2011). The time courses were converted to the
frequency domain using a fast Fourier transform. Then the square root
of the power spectrum was computed and averaged across 0.01–
0.08 Hz at each voxel. This averaged square root was taken as the
ALFF (Zang et al., 2007). To reduce the global effects of variability across
participants, the ALFF of each voxel was divided by the global mean
ALFF value for each subject.

ReHo analysis

First, a 0.01–0.08 Hz band-pass filter was applied to reduce the
effects of low-frequency drift and high-frequency noise. Then we used
Kendall's coefficient of concordance (KCC) to measure the similarity
of the time series within a functional cluster based on regional homoge-
neity. In this analysis, we defined 27 nearest neighboring voxels as
a cluster. Then, the individual ReHo map was divided by each
participant's global mean ReHo value within the brain mask for
standardization purposes. Finally, the ReHo maps were spatially
smoothed (FWHM= 6 mm).

Statistical analysis

Intrinsic brain activity associated with trait anxiety
To assess cross-sectional associations between the trait anxiety

scores and intrinsic brain activity, we performed two multiple linear
regression analyses to identify regions in which the ALFF and ReHo
were associated with individual differences in the level of trait anxiety
at the first time point. We used the trait anxiety score as the variable
of interest, age, and gender were included as regressors of no interest.
Please cite this article as: Tian, X., et al., Assessment of trait anxiety and pr
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Second, to verify the reliability of the results obtained at the first time
point, we performed two additional multiple linear regression analyses
using the data from the second time point. The significance threshold
was set at a corrected p b 0.05 at the cluster level (Alphasim correction:
uncorrected p b 0.005 and cluster size threshold of 27 voxels
(729 mm3). In addition, we used the Dice coefficient to analyze the
spatial overlap between the maps that were correlated with trait
anxiety at both Time 1 and Time 2 (Barbey et al., 2014; Bennett and
Miller, 2010). The Dice coefficient was typically calculated using the
following equation: Roverlap = 2*(Voverlap) / (V1 + V2), where
Voverlapwas the number of voxels within the ROI that were correlated
with trait anxiety at both Time 1 and Time 2, and V1 and V2 were the
number of voxels within the ROI that were correlated with trait anxiety
at Time 1 and Time 2, respectively. The results obtained using the Dice
equation could be interpreted as the number of overlapping voxels
divided by the average number of significant voxels over time.

Intrinsic brain activity associated with change of state anxiety
To explore the relationships between the changes in the ALFF and

ReHo and intra-individual state anxiety variability, we analyzed the
association of the maps representing intrinsic brain activity changes in
the ALFF and ReHo with intra-individual state anxiety variability, after
regressing out age, gender and the changes in trait anxiety. The change
in intrinsic brain activity was calculated for each participant by
subtracting their ALFF or ReHo map at Time 1 from that at Time 2
(ALFFTime 2–ALFFTime 1; ReHoTime 2–ReHoTime 1). We determined the
intra-individual state and trait anxiety variability in Changestate and
Changetrait for each subject. Changestate was calculated as Changestate =
State1− State2, where State1was the state anxiety score at Time 1, and
State2 was the state anxiety score at Time 2. Changetrait was calculated
as Changetrait = Trait1 − Trait2, where Trait1 was the trait anxiety
score at Time 1, and Trait 2 was the trait anxiety score at Time 2. The
brain regions that were correlated with the change in state anxiety
were defined as the ROIs, and the mean values of the ALFF and ReHo
were extracted. A change in state anxiety could be caused by changes
in somatic and affective symptoms. We used the extracted ROI signals
to test whether the intrinsic brain activity in the right insula was corre-
lated with the intra-individual somatic symptom variability or affective
symptom variability (the somatic symptom and the affective symptom
were measured by the SAS).

Addressing potential confounds
When we did the intrinsic brain activity associated with trait

anxiety, the participants' state anxiety scores were found to be
significantly correlated with the trait anxiety scores at each time point
(Time 1: r = 0.57, p b 0.001; Time 2: r = 0.72, p b 0.001). Therefore,
to determine whether these results of intrinsic brain activity associated
with trait anxiety were influenced by state anxiety, we conducted
analyses with inclusion the state anxiety score as a covariate. When
we did the intrinsic brain activity associated with change of state
anxiety, we also conducted analyses without the change of trait anxiety
score as a covariate. Meanwhile, to explore the potential influence of
head motion on the correlation results, analyses were conducted both
including and not including the mean level of motion for each partici-
pant as a covariate. Finally, to explore the potential influence of global
signal regression on the correlation results, the data preprocessing
were conducted both including regressed out the global signal and not
regressed out the global signal.

Results

Behavioral data

Table 1 lists the demographics of the total sample at Time1 and Time
2. Assessment of the trait anxiety scores at each time point revealed
moderately high Time 1–Time 2 correlations (r = 0.70), indicating
ediction of changes in state anxiety using functional brain imaging: A
age.2016.03.024
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t1:1 Table 1
t1:2 Demographic and psychometric characteristics of the subjects (n = 114).a

t1:3 Variable
Time 1,
means (SD)

Time 2,
means (SD)

Change
(Time 2–Time 1)

Time 1 and Time 2
association

t1:4 Age 19.96 (1.10) 20.71 (1.09) – –
t1:5 Gender M/F (59/55) M/F (59/55) – –
t1:6 State anxiety 35.45 (8.44) 36.40 (8.61) 0.96 (9.87) 0.33⁎⁎

t1:7 Trait anxiety 40.73 (7.34) 41.19 (8.43) 0.46 (6.17) 0.70⁎⁎

t1:8 Time 1 and Time 2 association: the correlation between the score of state anxiety、trait
t1:9 anxiety at Time 1 and Time 2.
t1:10Q1 a Pearson bivariate correlations, shown are r values.
t1:11 ⁎⁎ p b 0.001.

t2:1Table 2
t2:2Brain regions exhibiting significant correlations between theALFF and trait anxiety at each
t2:3time point, including age and gender as regressors of no interest.

t2:4Time point Brain region
MNI coordinate
(x y z)

Peak t-value
Volume
(mm3)

t2:5Time 1 Positive correlation
t2:6vACC/vmPFC_R 12,42,−15 3.90 1188
t2:7Negative correlation
t2:8dACC/aMCC 0,−9,30 −3.66 1026
t2:9Insula_R 45,−21,21 −3.50 1242
t2:10Time 2 Positive correlation
t2:11vACC/vmPFC_R 18,48,3 4.99 3672
t2:12Negative correlation
t2:13dACC/aMCC 0,−15,30 −3.62 1080

t2:14Note: ALFF = amplitude of low-frequency fluctuations; vACC/vmPFC = ventral anterior
t2:15cingulate/medial prefrontal cortex; dACC/aMCC=dorsal anterior cingulate cortex/anterior
t2:16midcingulate cortex; r = right.

4 X. Tian et al. / NeuroImage xxx (2016) xxx–xxx
that trait anxiety was a relatively stable individual personality. The
correlation coefficient of state anxiety at each time point was 0.33,
which was lower than that of trait anxiety. We used the one-sample t
test to compare whether the change of trait anxiety was greater than
zero, we found there was no significant differences between the change
of trait anxiety and zero (p = 0.423). That means the variance of trait
anxiety was not significant. Changes in the scores for trait and state
anxiety were positively correlated, with r = 0.47 (see Table 1). There
were no significant differences between the males and females in trait
anxiety (Time 1 (112) = 0.58, p = 0.56; Time 2 (112) = 1.38, p =
0.17) or state anxiety (Time 1 (112) = 0.81, p = 0.42; Time 2
(112) = 1.20, p = 0.23) at each time point, and there were also no
differences in the changes in trait anxiety (t (112) = 1.17, p = 0.24).

Intrinsic brain activity associated with trait anxiety

To assess cross-sectional associations between the trait anxiety
scores and intrinsic brain activity, we performed two multiple linear
regression analyses to identify regions for which the ALFF and ReHo
were associated with individual differences in the level of trait anxiety.
The results indicated that the ALFF and ReHo were significantly
positively correlated with trait anxiety in the vmPFC at the first time
U
N
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O
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Fig. 1. Regions showing significant partial correlation between the ALFF and trait anxiety for th
regions of the ventral medial prefrontal cortex (vmPFC) and the dorsal anterior cingulate cort
in trait anxiety at each time point. For the maps of Overlap, the red patches indicate sign
determined from the Time 2 data. Overlapping regions, which indicate consistency over time,
the significant cluster and the trait anxiety scores, adjusted for age, and gender, are shown fo
was set at p b 0.05 (corrected).

Please cite this article as: Tian, X., et al., Assessment of trait anxiety and pr
test–retest study, NeuroImage (2016), http://dx.doi.org/10.1016/j.neuroim
E
D
 P

R
O

Opoint, and we also found a negative correlation between the ALFF in
the dACC/aMCC and the trait anxiety score after including age and
gender as regressors of no interest. Importantly, these results were
verified at the second time point (Fig. 1, Table 2; Fig. 2, Table 3). The
overlapping clusters for the two time points in the vmPFC and dACC/
aMCC also showed significant correlations with trait anxiety at Time 1
and Time 2. These results indicated that the differences in intrinsic
brain activity in the vmPFC and dACC/aMCC were predictive of the
individual differences in trait anxiety.

In addition, a significant insula cluster showed negative correlations
between the ALFF and the ReHo and trait anxiety at Time 1 but not at
Time 2 (Fig. 3). Finally, we used the Dice coefficient to compute the
overlap rate between the maps that were correlated with trait anxiety
at both Time 1 and Time 2 after correction (Table 4). We also had
checked the Dice coefficient for ROI's separately. The Dice coefficient
represents the proportion of voxels that remain significant across
repetitions relative to the proportion that are significant in only a subset
e Time 1 and Time 2 data. The maps show that the intrinsic brain activities of significant
ex/anterior midcingulate cortex (dACC/aMCC) are correlated with individual differences
ificant regions identified from the Time 1 data, and the green patches indicate those
are colored in yellow. The scatterplots of the relationship between the mean ALFF within
r illustrative purposes only. The color bar represents the range of t-value. The threshold
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of the results. The overlap rate of the ALFFwas 0.22, and the overlap rate
of ReHo was 0.20.
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Intrinsic brain activity associated with change of state anxiety

To explore the relationships between changes in the ALFF and ReHo
and intra-individual state anxiety variability, we analyzed the associa-
tions of the maps representing intrinsic brain activity changes in
the ALFF and ReHo with intra-individual state anxiety variability, after
regressing out age, gender, and the changes in trait anxiety. The
resting-state data demonstrated a significant positive correlation
between changes in the ALFF and ReHo in the insula and intra-
individual state anxiety variability over time, after including age, gender
and change of trait anxiety as regressors of no interest. Specifically, the
change in the ALFF in this region predicted 18.5% of the variance in
intra-individual state anxiety (r = 0.43, p b 0.001). Further, the change
in ReHo in the insula predicted 20.3% of the variance in intra-individual
state anxiety (r=0.45, p b 0.001) (Fig. 4, Table 5). In addition, we found
that the changes in the ALFF and ReHo in the insula were positively
correlated with the changes in the somatic symptom scores (measured
by the SAS) (ALFF: r=0.20, p=0.041; ReHo: r=0.20, p=0.032), but
not with the affective symptom scores (measured by the SAS).
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Table 3
Brain regions exhibiting significant correlations between the ReHo and trait anxiety at
each time point, including age and gender as regressors of no interest.

Time point Brain region
MNI coordinate
(x y z)

Peak t-value
Volume
(mm3)

Time 1 Positive correlation
vACC/vmPFC_R 18,42,−15 4.20 4536
Negative correlation
Insula_R 42,−18,21 −4.37 945

Time 2 Positive correlation
vACC/vmPFC_R 9,42,−9 3.76 2025

Note: ReHo, regional homogeneity; vACC/vmPFC = ventral anterior cingulate/medial
prefrontal cortex; r = right.

Please cite this article as: Tian, X., et al., Assessment of trait anxiety and pr
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E
DAddressing potential confounds

When did the intrinsic brain activity associated with trait anxiety,
these results of correlation analyses with the state anxiety score as a
covariate were largely similar when the state anxiety score was not
included as a covariate (see Supplementary Tables 4 and 5). However,
including state anxiety as a covariate resulted in the loss of significance
of the negative correlation between the ALFF in the dACC/aMCC and the
trait anxiety score (the dACC/aMCC cluster failed to reach theminimum
cluster threshold).

When did the intrinsic brain activity associated with change of state
anxiety, the changes in trait anxiety scores were not included as
covariates, these results of correlation analyses were predominantly
similar, except that the correlation between the change in the ALFF of
the insula and the change of state anxiety score was no longer signifi-
cant (the insula cluster failed to reach the minimum cluster threshold)
(see Supplementary Table 6).

Finally, the global signal regressed out or not, these results of corre-
lation analyses were predominantly similar, except that the correlation
between the ALFF of the dACC/aMCC and the trait anxiety score was no
longer significant (see Table 2 and Supplementary Table 7). Meanwhile,
the relationship between the ReHo in the precentral and trait anxiety
score (see Table 3 and Supplementary Table 8), the change of ReHo in
inferior frontal gyrus and the change of state anxiety (see Table 5 and
Supplementary Table 9) were significant when the global signal was
not removed. When mean level of motion were conducted both
including and not including as a covariate, the results of the correlation
analyses did not change (see Supplementary Tables 10 and 11).

Discussion

The aim of the current study was to investigate the association of
intrinsic brain activity with the feeling of anxiety, particularly trait and
state anxiety. We performed resting-state fMRI to investigate the roles
of intrinsic brain activity in trait and state anxiety using a cross-
sectional and test–retest design.We found that the intrinsic brain activ-
ities of the right vmPFC and dACC/aMCC were significantly associated
with inter-individual trait anxiety differences. Furthermore, changes in
ediction of changes in state anxiety using functional brain imaging: A
age.2016.03.024
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the ALFF and ReHo in the right insula were significantly correlated with
intra-individual state anxiety variability over a 9-month interval.

We used the test–retest method to identify the stable regions in
which intrinsic brain activity associated with trait anxiety. To our
knowledge, few studies have evaluated the test–retest reliability of
intrinsic brain activity in association with the emotional state over the
long-term. Using this method, it is possible to search for the stable
regions for which intrinsic brain activity is associated with trait anxiety.
In addition, the test–retest nature could permit the discernment
between intrinsic brain activity associated with state and trait anxiety.

First, we found overlapping regions associated with trait anxiety in
the vmPFC and dACC/aMCC between the scans performed at the two
time points, indicating that the intrinsic brain activity associated with
trait anxietywas quite stable in some regions. The associations between
trait anxiety and the ALFF and ReHo in the right vmPFC were consistent
with previous studies describing a role of the right vmPFC in the
negative affect of individuals (Kross et al., 2009; Lemogne et al., 2012;
Zald et al., 2002) and this associations were also observed in anxiety
disorder (Shang et al., 2014). For example, Evans found the therapeutic
effects in generalized social anxiety disorder (gSAD)may be effected on
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Table 4
Spatial overlap between themaps correlatedwith trait anxiety at both Time 1 and Time 2.
This analysis includes age, gender, and the mean level of motion as regressors of no
interest.

Dice coefficient

Trait anxiety ALFF 0.22
ALFF of vmPFC 0.16
ALFF of dACC/aMCC 0.49

ReHo 0.26
ReHo of vmPFC 0.29

Note: ALFF = amplitude of low-frequency fluctuations; ReHo, regional homogeneity;
vACC/vmPFC = ventral anterior cingulate/medial prefrontal cortex; dACC/aMCC =
dorsal anterior cingulate cortex/anterior midcingulate cortex. The maximum value of 1
indicated perfect similarity whereas the minimum value of 0 indicated no similarity.
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the vmPFC (Evans et al., 2009) and Wager identified blunted vmPFC
activity as a common finding in studies of posttraumatic stress disorder
(PTSD) (Etkin and Wager, 2007). Generally, the vmPFC acted as a hub
that integrated external and internal stimuli to determine the affective
value of the stimuli and to influence behavioral reactions (Bickart
et al., 2012; Dunn et al., 2006; Lindquist et al., 2012; Rudebeck et al.,
2008), and it was largely associated with affective regulation
(e.g., cognitive reappraisal) (Motzkin et al., 2015; Ochsner and Gross,
2005; Ochsner et al., 2012). Further, meta-analysis had shown that
regulation of negative affect engages the vmPFC (Diekhof et al., 2011).

Our analyses also revealed an association between trait anxiety and
ReHo in the dACC/aMCC. A meta-analysis of studies examining the
processing of negative affect had implicated the dACC/aMCC in negative
affect (Mechias et al., 2010), and two studies had found that dACC
responses were predictive of the response to treatment in generalized
anxiety disorder (Nitschke et al., 2009;Whalen et al., 2008). Convergent
evidence obtained using functional neuroimaging indicates that the
dACC/aMCCwas involved in the brain circuitry underlying the detection
and allocation of attentional resources to threat stimuli (Blair et al.,
2012; Cavanagh and Shackman, 2014; Etkin et al., 2011; Kohn et al.,
2014; Shackman et al., 2011). In addition, studies of anxiety disorder
had reported reduced dACC/aMCC activity during top-down attentional
control (Blair et al., 2012; Klumpp et al., 2012). In contrast, functional
neuroimaging about the individuals with higher levels of anxiety
shown enhanced dACC/aMCC signals when performing emotional
cognitive control tasks (Cavanagh and Shackman, 2014; Moser et al.,
2013; Shackman et al., 2011). Individuals with higher levels of anxiety
may have lower intrinsic brain activity of dACC/aMCC at rest, when con-
ducted the emotional cognitive control tasks, healthy subjects managed
their emotions through enhanceddACC/aMCC signals, while the anxiety
disorder could not effectively activate the dACC/aMCC. Thus, the stable
intrinsic brain activity observed in association with trait anxiety in the
vmPFC and dACC/aMCC was agreement with the findings of previous
studies.

Importantly, the finding of the association of the changes in the ALFF
and ReHo in the right insula with intra-individual state anxiety
ediction of changes in state anxiety using functional brain imaging: A
age.2016.03.024
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variability and, in particular, variability in the somatic symptoms of
anxiety, was of interest considering that the insula had important
roles in emotional and homeostatic processes, including the processing
of subjective emotional experiences (Critchley et al., 2004; Ernst et al.,
2013; Paulus and Stein, 2006; Singer et al., 2009), anticipation of
emotionally negative stimuli (Lutz et al., 2013; Simmons et al., 2011),
and attention to and awareness of internal body states (Craig, 2003,
2011; Khalsa et al., 2009). To some extent, a change in state anxiety
reflected an emotional change caused by the awareness of feelings in
the body. An earlier study performed by Craig (2002) had proposed
that the insula may be an essential neural region responsible for the
awareness of feelings in the body, as well as the engendering of subjec-
tive emotions from body signals (Craig, 2002, 2009, 2011). Paulus and
Stein (Paulus and Stein, 2006) proposed a general hypothesis that
anxious individuals were prone to augmented the difference between
the observed and expected body state. In addition, Critchley and
colleagues had performed a heartbeat detection task and found that
interoceptive awareness was accompanied by increased neural activity
in the insula and that this increasewas correlatedwith the anxiety score
(Critchley et al., 2004). A similar result had been described by Terasawa
et al., who had reported that the insula was activated when people
evaluated their own emotional and body states and that this activation
was positively correlated with individual levels of anxiety (Terasawa
et al., 2013a, 2013b). All of these studies had demonstrated strong
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Table 5
Brain regions for which the change in spontaneous neuronal activity was significantly
correlated with a change in state anxiety, including age and gender as regressors of no
interest.

Brain region MNI coordinate (x y z) Peak t-value Volume (mm3)

ALFF Insula_R 39,12,9 3.49 891
Reho Insula_R 30,12,-15 4.59 1836

Insula_R 51,6,12 3.56 1836

Note: ALFF= amplitude of low-frequency fluctuations; ReHo, regional homogeneity; r=
right.
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E
Dlinks between the insula, awareness of the body state, and the experi-

ence of anxiety.
Notably, although our results indicated the presence of strong links

between the ALFF and ReHo in the vmPFC and dACC/aMCC and trait
anxiety, as well as those in the insula and change of state anxiety, we
could not prove their causal relationships in this study. There are
many unknown related or confounding factors that could influenced
these findings. However, we have demonstrated the link between
intrinsic brain activity and trait anxiety in cross-sectional and test–
retest analyses, and our results are largely consistent with the studies
findings about the individuals with high anxiety and anxiety disorder
(Baur, 2012; Shang et al., 2014; Blackmon et al., 2011; Sladky et al.,
2013; Talati et al., 2013; Zhang et al., 2015). Therefore, despite the
short time interval between the two imaging assessments, the unclear
relationship between the ALFF and ReHo and the existence of other
approaches used for measuring the association of intrinsic brain activity
with anxiety, we have provided a reliable and valid model of the effects
of anxiety on the brain.

In conclusion, we used a test–retest study design to distinguish
between the intrinsic brain activity associated with state and trait
anxiety. The present results explicitly indicate that the intrinsic brain
activities of the vmPFC and dACC/aMCC might be of strong importance
for trait anxiety-related processes, whereas a change in intrinsic brain
activity in the insulamight be predictive ofmental state anxiety changes
in the healthy population. Finally, our results support the view that state
and trait anxiety are specifically subserved by the intrinsic brain
activities of different regions. Further studies must be performed to
establish the causal relationships between intrinsic brain activity and
state/trait anxiety, as well as the different influences of trait and state
anxiety on individuals' mental and physical well-being.
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