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Highlight 

 The advantages of this study are mainly reflected in following aspects.  

 Firstly, we used a large sample in this study to avoid the problems in previous 

MDD researches with small sample.  

 Besides, the practice combining personality traits with psychiatric disease in 

research keeps with current idea that diseased people and healthy people 

should not be seen as separate, but as different location on a same spectrum. 

Consistent with this idea, the results of this study support the potential of 

personality as an important factor affecting depression and as a therapeutic 

target.  

 Moreover, we used DFNC method, which was more sensitive to overall 

mental state and could catch more instantaneous difference so we could get 

some information that is not available with traditional static FC analysis. 
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ABSTRACT 

Background: Major depressive disorder (MDD) is one of the most well-known 

psychiatric disorders, which can be destructive for its damage to people’s normal 

cognitive, emotional and social functions. Personality refers to the unique and stable 

character of thinking and behavior style of an individual, which has long been thought 

as a key influence factor for MDD. Although some knowledge about the common 

neural basic between MDD and personality traits has been acquired, there are few 

studies exploring dynamic neural mechanism behind them, which changes brain 

connectivity pattern rapidly to adapt to the environment over time.  

Methods: In this study, the emerging dynamic functional network connectivity 

(DFNC) method was used in resting-state fMRI data to find the differences between 

healthy group (N=107) and MDD group (N=109) in state-based dynamic measures, 

and the correlations between these measures and personality traits (extraversion and 

neuroticism in Eysenck Personality Questionnaire, EPQ) were explored.  

Results: The results showed that MDD was significantly less than the health control 

group in dwell time and fraction time of state 4, which was positively correlated with 

extraversion score and negatively correlated with neuroticism score. Further 

exploration on state 4 showed that it had low modularity, hyper-connectedness of 

sensory-related regions and DMN, and weak connections between cortex and 

subcortical areas, which suggested that the absence of this state in MDD might 

represent a decrease in activity and positive emotions.  

Conclusion: We found the dynamic functional connectivity mechanism underlying 
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MDD, confirmed our hypothesis that there existed the interacted relationship between 

trait, disease and the brain's dynamic characteristic, and suggested some reference for 

treatment of depression.  

Keywords: DFNC, major depression disorder, personality trait, EPQ, FC state 
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Introduction 

Major depressive disorder (MDD) is one of the most well-known psychiatric 

disorders characterized by a long period of low mood, anhedonia, pessimism, lack of 

initiative and dysfunction of neuro-vegetative system (Iwabuchi et al., 2015; Lux & 

Kendler, 2010; L. Wang, Hermens, Hickie, & Lagopoulosn, 2012). Compared with 

other mental health problems, MDD is quite common (it is estimated that 11.2% of 

individuals affected by MDD at some time point in their lives) and can damage 

people’s normal cognitive, emotional and social function in multiple aspects (C, A, & 

P, 2015), so it is important to determine the key psychological and neural factors 

affecting the generation, development and treatment of MDD. Personality refers to the 

unique and stable character of thinking and behavior style of a person, which is 

considered to be closely associated with a variety of psychiatric disorders, including 

depression and anxiety (Bienvenu et al., 2004; Lux & Kendler, 2010), and the 

personality traits most widely studied have been neuroticism and extraversion. 

Extraversion is characterized by being talkative and outgoing, having more positive 

affect, and seeking external stimulation; neuroticism or emotionality is characterized 

by more negative affect such as observed in depression and anxiety (Eysenck & 

Eysenck, 1975). In previous studies, neuroticism was shown to be a risk factor for 

depression, while extroversion was seen as a protective factor against MDD (Grav, 

Stordal, Romild, & Hellzen, 2012; Kendler, Gatz, Gardner, & Pedersen, 2006). 

Studies of patients with depression suggested that individuals with high neuroticism 

and/or low extraversion tended to show more severe depressive symptoms, and they 

were found more difficult to recover from depression and benefit less from 
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psychological treatment or medication (Bagby, Joffe, Parker, Kalemba, & Harkness, 

1995; Bienvenu et al., 2004; Jylha, Melartin, Rytsala, & Isometsa, 2009; Kudo et al., 

2017; Quilty et al., 2008). Recently, there had been a consensus in academia that 

abnormalities in various mental disorders and psychiatric function might be 

distributed on a continuous spectrum, and the new research paradigm, Research 

Domain Criteria (RDoC) project, was proposed to promote cross-disease research (BJ 

et al., 2013; T. Insel, Cuthbert, Garvey, Heinssen, & Pine, 2010; T. R. Insel, 2014; 

Lilienfeld, 2014). Personality, as a stable cognitive and behavioral trait across 

individuals, could serve as a bridge between diseased and normal function, which 

highlights the necessity of combining personality measures with MDD in research. 

In early studies, due to the limitations of technology, the temporal attributes of brain 

activity were always ignored, and most studies focused on functional spatial 

localization in the brain. However, the temporal attribute is quite significant; for 

example, maintaining depressive mood for more than two weeks is one of the core 

diagnostic criteria for MDD (Lux & Kendler, 2010; US, 2013). A common paradigm 

for considering time information is the functional connectivity (FC) method, which 

focuses on synchronous activity between two brain regions (Bastos & Schoffelen, 

2016; Biswal, Yetkin, Hyde, & Haughton, 1996; Mp & Hulshoff Pol, 2010), and since 

its birth, it has been widely used to study MDD, neuroticism and extraversion. In 

previous studies, MDD was suggested to be associated with multiple functional 

networks, mainly including the default mode network (DMN), control executive 

network (CEN), salience network (SN) and the subcortical limbic system. The DMN 
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is one of the most frequently reported networks in MDD studies. MDD patients were 

usually reported to have stronger connectivity within the DMN, but there have also 

been inconsistent results, which some researchers thought was caused by the 

heterogeneity of the DMN (Bohr et al., 2012; Brakowski et al., 2017; Gudayol-Ferre, 

Pero-Cebollero, Gonzalez-Garrido, & Guardia-Olmos, 2015; Ma et al., 2012; Sacchet 

et al., 2016; Sexton et al., 2011; Xueling Zhu et al., 2012). The CEN, the network 

associated with cognitive control and attention, and its essential hub the dorsolateral 

prefrontal cortex (dlPFC) showed reduced connectivity with other brain regions, 

especially with parts of the DMN (Crowther et al., 2015; He et al., 2016; Klauser et 

al., 2015; Ye et al., 2012). The SN was thought to be responsible for the switching 

between the DMN and CEN, and some studies showed that MDD patients had 

stronger connectedness with the anterior cingulate cortex (ACC) and weaker 

connectedness with the bilateral insula (Andrei et al., 2013; Goulden et al., 2014; 

Tahmasian et al., 2013). In addition, the subcortical limbic system, represented by the 

basal ganglia, amygdala and hippocampus, is considered to be significant in MDD. 

The amygdala was reported to be less connected with other brain regions, except the 

temporal lobe, and the basal ganglia typically showed lower connectivity in MDD 

(Cullen et al., 2014; Gabbay et al., 2013; Klauser et al., 2015; Lui et al., 2011; Peng et 

al., 2014; Taylor et al., 2014). Personality neuroscience research has shown that there 

are plentiful overlapping neural mechanisms among neuroticism, extraversion and 

MDD. For example, neuroticism was thought to be associated with higher DMN, SN 

and amygdala activity, as well as the lack of CEN activity (Aghajani et al., 2014; Hsu, 
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Rosenberg, Scheinost, Constable, & Chun, 2018; Michelle N. Servaas et al., 2017; 

Servaas et al., 2015), and extroversion was thought to be associated with higher basal 

ganglia activities and lower amygdala activity (Aghajani et al., 2014; Hsu et al., 2018; 

Lei, Yang, & Wu, 2015; Lei, Zhao, & Chen, 2013). However, FC studies use the time 

series from an entire scanning period to calculate the correlation coefficients, which 

leads to the loss of information on the micro-time scale. 

In recent years, many studies have shown that the brain is not immutable but rather a 

dynamic complex system that constantly changes itself for adapting to the 

environment on a micro-time scale (Deco & Kringelbach, 2014; Preti, Bolton, & Van 

De Ville, 2017). Dynamic methods, represented by the sliding time window method, 

have been widely used in studies of cognitive function, mental illness and lifelong 

development and other fields (Allen et al., 2014; Gonzalez-Castillo & Bandettini, 

2017; Marusak et al., 2017; Sakoglu et al., 2010; Young et al., 2017). Along with the 

development of dynamic methods, growing research interest on the brain’s temporal 

properties emerged, in which dynamic functional network connectivity (DFNC) is a 

promising research direction. The DFNC method focuses on the dynamic FC patterns 

that occur within and between all functional networks, which contain a reoccurring 

network configuration (Calhoun, Miller, Pearlson, & Adali, 2014; R. M. Hutchison et 

al., 2013). The recurring states of activation or FC, that is, the chronnectome, might 

represent a certain state of arousal or consciousness level, and information related to 

development, learning, and training as well as individual differences could be 

acquired by measuring the temporal characteristics of certain FC states (Calhoun et al., 
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2014). As a new method, DFNC had demonstrated its effectiveness in a variety of 

diseases and conditions, such as schizophrenia (Damaraju et al., 2014; Shen et al., 

2014), bipolar disorder (Rashid, Damaraju, Pearlson, & Calhoun, 2014), autism 

spectrum disorder (Lacy, Doherty, King, Rachakonda, & Calhoun, 2017) and mild 

traumatic brain injury (Mayer et al., 2015), but there is no systematic study on MDD 

to explore its dynamic FC characteristics. 

Therefore, the goal of this research was to explore abnormalities in the dynamic FC 

characteristics of MDD and to identify whether personality traits had a significant 

relationship to these dynamic characteristics. We used group-level independent 

component analysis (group ICA) to divide the brain into eight functional networks 

and built DFNC frameworks for all MDD patients and participants in the healthy 

control group. Then, k-means clustering was used to detect the relatively stable FC 

states. For all identified states, the time-frequency attributes were determined and 

compared between groups. The correlation coefficients between dynamic measures 

and personality traits was also calculated. Based on prior FC studies of MDD, we 

hypothesized that there existed one or more critical FC states with different time 

attributes between the MDD and control groups, which might show abnormalities in 

regions that were related to both MDD and personality, such as the DMN and limbic 

system, and was likely to be under the influence of specific personality traits. 

Methods and materials 

Participants 

A total of 383 patients and 260 healthy people were enrolled in the outpatient 
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department of the First Affiliated Hospital of Chongqing Medical School in 

Chongqing, China. For all patients, there were two psychiatrists providing 

independent diagnoses according to the Structured Clinical Interview for the DSM-IV 

by to exclude patients with other disorders, such as bipolar depression (BP). Each 

patient was asked to complete a series of questionnaires, including the Beck 

Depression Inventory (Parker Jones, Voets, Adcock, Stacey, & Jbabdi), Hamilton 

Depression Rating Scale (HAMD), Symptom Checklist 90 (SCL-90), Short 

Ruminative Responses Scale (SRRS) and Eysenck Personality Questionnaire [EPQ, 

85-question Adult Edition, translated into Chinese by Chen et al. (Chen & Al, 1983)]. 

Clinical information, such as illness duration and current medications, were also 

collected. 

Healthy individuals matched with the patients for sex, age and education level were 

selected as the healthy control group (HC group) and completed the same EPQ 

questionnaire. The HC group did not complete the clinical questionnaire. For the HC 

group, to exclude subjects with potential mental disorders, two well-trained and 

experienced graduate students in the school of psychology performed the Structured 

Clinical Interview for the DSM-IV. All subjects included in the HC group did not 

meet the DSM-IV criteria for psychiatric disorders and did not use drugs that could 

affect brain function (including antidepressant drugs).In addition, a self-report 

checklist was used for both the MDD group and HC group to exclude participants 

who satisfied any of the following criteria: serious brain trauma, substance abuse, 

hypertension or cardiovascular disease. To decrease extraneous variability, underage 
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(<18) and overage (>75) participants were also removed. Finally, 226 participants 

(114 patients and 112 healthy controls) were included in the analysis. The subject 

exclusion process is shown in Fig 1. 

INSERT FIGURE 1 HERE 

This study was approved by the Research Ethics Committee of the Brain Imaging 

Center of Southwest University and First Affiliated Hospital of Chongqing Medical 

School. Before MRI scanning, all participants completed an informed consent form. 

To detect differences between the groups in basic demographic variables, we 

performed independent samples t-tests, and the results are shown in Supplemental 

Materials. 

MRI Data Acquisition and Preprocessing:  

All subjects underwent MRI scanning at the Brain Imaging Center of Southwest 

University. Resting-state image data were acquired using a 3.0-T Siemens Trio MRI 

scanner with a 16-channel whole-brain coil (Siemens Medical, Erlangen, Germany). 

For each participant, 242 functional images were acquired with a gradient echo type 

echo planar imaging (EPI) sequence [echo time (TE)=30 ms; repetition time 

(TR)=2000 ms; flip angle=90 degrees; slice thickness=3.0 mm; slices=32; resolution 

matrix=64×64; voxel size=3.4×3.4×3 mm]. All subjects were asked to stare at a white 

fixation point on a dark background and keep their head still throughout the scan. 

Preprocessing was performed by Data Processing Assistant for Resting-State fMRI 

(DPARSF; http://rfmri.org/DPARSF), which is a toolbox based on the SPM12 

software package (Chao-Gan & Yu-Feng, 2010). To reduce equilibration effects, the 
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first 10 volumes were discarded. The remaining images underwent slice timing 

correction, motion correction to reduce displacement between volumes, spatial 

normalization toward standard Montreal Neurological Institute (MNI) space and 

spatial smoothing (6 mm full width half maximum). To eliminate the influence of 

motion on DFNC, participants with a maximum displacement of >2 mm and 

maximum rotation of >2 degrees were excluded before further analysis. Ten 

participants’ data were discarded, and the basic demographic information of the 216 

remaining participants is listed in Table 1. 

INSERT TABLE 1 HERE. 

Group ICA and component selection: 

The pipeline of the ICA basically followed the steps described in the classic article by 

Allen and his colleagues (Allen et al., 2014). A relatively high model order (number 

of components=100) group-level spatial ICA was implemented to decompose the 

signal into compositions of functional networks using the GIFT toolbox 

(http://mialab.mrn.org/software/gift/). Before ICA, a subject-specific principal 

component analysis (PCA) was performed in which 150 principal components 

remained using standard economy-size decomposition. Then, the group data were 

further reduced to 100 independent components (IC) using the 

expectation-maximization algorithm. Aggregate spatial maps were constructed using 

the Infomax algorithm in ICASSO, and this process was repeated 10 times. Using the 

GICA1 back reconstruction, time courses (TCs) and spatial maps (SM) of each 

individual were estimated. 
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We characterized 75 of 100 ICs to perform further analysis, and 25 other ICs were 

discarded as physiological noise, movement signals, or artifacts of the scanner. To 

determine whether a component was noise was based on the following characteristics: 

peaks were in a gray matter area, had low spatial overlap with vascular regions, or 

were due to cerebrospinal fluid (CSF) or head motion artifacts (Cordes et al., 2000). 

The remaining ICs were assigned into 8 functional networks based on visual identity. 

The distribution of these networks was consistent with the findings of Allen et al.; in 

addition, the salience network (SN) was added to this study for its essential role in a 

variety of psychiatric and mental disorders. All 8 functional networks shown in Fig 2. 

INSERT FIGURE 2 HERE. 

Postprocessing and dynamic FC construction: 

The sliding time window method was used to construct dynamic functional 

connectivity. Before dividing the sliding windows, additional postprocessing was 

performed for TCs of all components to regress out the remaining noise sources. 

Processing at this step mainly included (1) detrending linear, quadratic, and cubic 

trends, (2) regressing the 6 parameters of head movement, (3) regressing of outliers, 

(4) low-pass filtering (cutoff=0.15 Hz) and (5) normalizing the variance of each TC. 

Because previous studies have suggested that the best window size settings should be 

between 30 ~ 60 s (R. M. Hutchison et al., 2013; Preti et al., 2017), we chose the 

30-TR window (60 s). We used a Gaussian (σ=3 TRs) function to create a tapered 

window, slid in steps of one TR every time, and then computed the covariance 

matrices in every slide window. 
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Clustering Analysis and state-based measures 

A k-means clustering was performed to detect specific FC patterns to the windowed 

covariance matrices, and the dynamic measures for each subject were calculated. 

In k-means clustering, we use the Manhattan distance to measure the similarity 

between different time windows. In previous work, we suggested that in 

high-dimensional data, the Manhattan distance might be more effective than the 

Euclidean distance (Aggarwal, Hinneburg, & Keim, 2001). To select an optimal 

number of clusters (k), we performed the analysis setting k from 2 to 10 and used the 

“elbow method” to find that the inflection of the ratio between the mean distance 

between the clusters and the mean distance within the clusters as the optimal k value. 

In this analysis, the best k value was 4. To avoid cost function convergence to the 

local optimal solution, all clustering analyses were iterated 5 times, and the best result 

was kept. The centroids of 4 clusters are shown in Fig 3 representations of 4 FC 

states. 

INSERT FIGURE 3 HERE 

According to the clustering results, we calculated the dynamic measures for each 

individual, including (1) fraction of the total time, which means the proportion of the 

number of time windows belonging to a certain state to the total number of windows; 

(2) mean dwell time, which means the mean length of time that a certain state occurs; 

(3) number of transitions, which means the number of state transitions throughout the 

entire scan (Rashid et al., 2014). 

Cross- group difference comparison 
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Because of the nonnormality of the dynamic measures, the Mann-Whitney U test, a 

nonparametric test, was used in this study to detect the difference between MDD and 

HC. To keep the type I error low, the false discovery rate (FDR) correction was used 

for each analysis. The Mann-Whitney U test was performed using Statistic Package 

for Social Science (SPSS). 

Correlation analysis 

To further explore the relationship between depression, personality and brain dynamic 

connectivity characteristics and to determine the intrinsic meaning of these 

connectivity states, we calculated the Spearman rank correlation between behavior 

scales and dynamic measures within the MDD patient group. To keep the type I error 

low, the false discovery rate (FDR) correction was used for each analysis. The 

analysis within the HC group was also performed with the same methods as the MDD 

group. All correlation analyses were performed using the built-in function corr 

provided by MATLAB. 

Exploring the meaning of dynamic FC states 

The interpretation of the meaning of FC states is essential in dynamic studies. In this 

study, we describe two aspects of the 4 states: the global integration level and the 

connection characteristics of each functional network. 

We used the modularity index Q to describe the integration level of each FC state, and 

a normal Louvain community detection algorithm was performed to find the potential 

functional communities that might exist. The Brain Connectivity Toolbox (BCT, 

http://www.brain-connectivity-toolbox.net/) was used to perform the community 
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detection algorithm and calculate the Q value. Modularity Q is defined as the fraction 

of edges that fall within group 1 or 2 minus the expected number of edges within 

groups 1 and 2 for a random graph with the same node degree distribution as the 

given network. The formulation of Q is as follows (Yue et al., 2017): 

Q=1/2m∑vw(Avw−kvkw/2m)δvw 

Considering a graph with n nodes and m links, Avw represents the real edge between 

node v and w, the expected number of edges between them is kvkw/2m, and δvw is equal 

to 1 when v and w belong to a community; otherwise, it is equal to 0. The larger the Q 

value, regions of the brain are more likely to aggregate into different functional 

modules; smaller Q values represent a brain that tends to integrate into a generally 

connected, inseparable whole. The results of community detection are shown in Fig 4. 

INSERT FIGURE 4 HERE. 

Given the significant role of subcortical regions such as the hippocampus, thalamus 

and ventral striatum (VS), we computed a common graph theory measure, degree, to 

explore the connectedness of these three components. Degree was calculated by 

counting the numbers of connections between these areas and other regions of the 

entire brain separately. We used the Graph thEoreTical Network Analysis (GRETNA; 

https://www.nitrc.org/projects/gretna) toolbox to calculate the degree (J. Wang et al., 

2015). To avoid the influence of threshold, we used sparsity thresholds from 0.05 to 

0.4 with a step of 0.01 to acquire multiple measures of degree and draw the receiver 

operating characteristic curve (ROC curve). The area under the curve (de Moor et al.) 

was used as the final measure of degree. 
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Validation analysis 

To ensure the validity of the results, different window sizes (20 TRs, 40 TRs) were 

used to systematically replicate the analysis. In addition, to control the effects from 

nuisance variables, we repeated the correlation analysis using the Spearman partial 

correlation method, controlling for head motion and other demographics (age, gender 

and education years) as covariates. All partial correlation analyses were performed 

using the built-in function partialcorr provided by MATLAB. 

Results 

Cross-group difference comparison 

At the behavioral level of analysis, we found that the extroversion of the MDD group 

was significantly lower than that of the HC group, whereas the neuroticism of the 

MDD group was significantly higher than that of the HC group. At the brain image 

level of analysis, we found in state 4 that patients had significantly lower fraction and 

mean dwell time than the HC group (for fraction, Mann-Whitney U=6824, p=0.006; 

for mean dwell time, Mann-Whitney U=6869, p=0.004; pFDR<0.05). No significant 

result was found in other states. 

Correlation analysis 

In state 4, both fraction and mean dwell time showed positive correlations with 

extroversion (for fraction, r=0.292, p=0.002; for mean dwell time, r=0.29, p=0.002; 

pFDR<0.05) and showed negative correlations with neuroticism (for fraction, r=-0.23, 

p=0.016; for mean dwell time, r=-0.23, p=0.016; pFDR<0.05); in addition, there were 

also negative correlations with the SCL-90 measures of phobic anxiety (for fraction, 
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r=-0.241, p=0.012; for mean dwell time, r=-0.232, p=0.016; pFDR<0.05) and 

“additional items” (assesses other aspects of the patients’ symptoms such as poor 

appetite; for fraction, r=-0.196, p=0.042; for mean dwell time, r=-0.195, p=0.043; 

pFDR<0.05). Regarding the other states, state 1 exhibited a positive covariant 

relationship with extroversion and a negative relationship with scores on the BDI 

scale; state 2 exhibited a negative correlation relationship with extroversion and a 

positive correlation with the depression evaluation dimension of the SRRS; state 3 

and transition times did not show any significant correlations with the behavioral 

measures. In addition, no dynamic measure was significantly correlated with age and 

education years. See Table 3 for more details about the correlation analyses for all 

dynamic measures. 

For the HC group, there were no significant results that survived under the FDR 

correction except that the neuroticism score was significantly correlated with the 

mean dwell time of state 4 when the window size was 30 TR (r=-0.263, p=0.006; 

pFDR<0.05) and the fraction of state 4 when the window size was 40 TR (r=-0.281, 

p=0.003; pFDR<0.05). It is worth noting that while there were not many significant 

results following the multiple comparison correction, the HC group showed the same 

trend of correlation as the MDD group in state 4: more state 4 tended to be associated 

with higher extroversion scores and lower neuroticism scores. The information about 

correlation analysis within the HC group can be found in the Supplemental Materials. 

Exploring the meaning of dynamic FC states 

State 1 and state 4 tended to have lower Q, and in particular, there were only two 
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functional modules in state 4 rather than three observed in other states. A large cluster 

that stretched across the anterior joint area and the posterior sensory cortex existed in 

state 4, which was always separated into an anterior part and a posterior part in other 

states. 

The average connection strength in all 8 networks between each network and between 

other regions of the entire brain was calculated. State 4 showed the strongest 

connection inside and outside of the auditory network (AN), sensory motor network 

(SMN) and visual network (VN), while showing the weakest links inside and outside 

of the subcortical area (SC). In addition, state 4 showed relatively strong connections 

in the CEN, DMN and SN. Regarding the other states, state 1 showed a similar pattern 

as state 4, but it showed the strongest connectivity inside and outside the CEN, SN, 

AN and SC, as well as the cerebellum (CB); state 2 exhibited the weakest 

connectivity of the CEN, SN and SMN; and state 3 exhibited the weakest connectivity 

of the DMN and VN. For the subcortical regions, state 4 showed the lowest 

connectedness with other regions in the hippocampus and VS (shown in Fig 4). 

Based on the analysis above, we defined two low-modularized states, state 1 (with 

global strong connectivity) and state 4 (with strong connectivity in sensory regions 

and the DMN, but weak links between cortex and subcortical regions), and two 

high-modularized states, state 2 (with global weak connectivity) and state 3 (a 

globally modularized state). 

Validation analysis 

In the validation analysis, all other parameters remained unchanged except the 
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window size, and all the dynamic measures were calculated separately. To ensure the 

consistency of multiple clustering results, we calculated the Pearson correlation 

coefficient between the cluster centroids under different window sizes and defined the 

states with the highest correlation coefficient as the same state. The average r value 

between FC centroids identified as the same state in different window sizes was 0.953, 

and the average r value between centroids defined as different states was 0.652. All 

cross-group analyses and the correlation analyses were repeated using different 

window sizes. Most of the main results could be repeated successfully, except for the 

correlation between state 2 and the depression evaluation (window size=40 TR). In 

addition, the fraction of state 2 was higher in the MDD group than in the HC group 

when the window size=40 TR, and a negative correlation was reported for state 4 with 

the anxiety dimension assessed by the SCL-90 (window size=40 TR). 

For the partial correlation analysis, most of the extroversion results were repeated 

successfully, while the neuroticism score only correlated significantly with the mean 

dwell time of state 4 (r=-0.258, p=0.007; pFDR<0.05). Additionally, the results of the 

BDI score and the anxiety score from the SCL-90 were only repeated when the 

window size=40 TR. Detailed validation information can be found in the 

Supplemental Materials. 

Discussion 

This study used the DFNC method to depict the difference in brain dynamic FC 

characteristics between MDD patients and healthy participants and explored the effect 

of two essential personality traits, extraversion and neuroticism, on the dynamic 
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characteristics. Four reoccurring FC states were defined using the hard clustering 

algorithm, in which state 4 exhibited a significant difference between the MDD and 

HC groups and was associated with extraversion and neuroticism. Quantitative 

analysis of all states found that state 4 has the following particular characteristics: 

extensive integration among the entire brain, especially the frontal part and the 

posterior part; increased covariation between sensory-related regions and the DMN 

with themselves and other areas; and decreased connectivity linking the cortex and 

subcortical areas, such as hippocampus and VS. In addition, we validated the analysis 

with different conditions to ensure stable results. 

Different dynamic FC states between MDD and HC 

In this study, our primary goal was to identify the differences between the MDD and 

HC groups. We found in MDD patients that there was a significant lack of state 4, a 

relatively low-modularized state, in which all parts of the brain tended to 

communicate with each other and the information processing tendency might 

represent a higher level of integration. For state 4, an interesting feature was that 

stronger links existed widely among multiple networks, especially for sensory-related 

regions and the DMN. Findings that involve sensory-related areas have been 

relatively rare in previous FC studies of depression, although several studies have 

reported decreases in connectivity in sensory areas in MDD (Ben-Shimol, Goelman, 

Sartorius, & Gass, 2014; Benshimol, Gass, Vollmayr, Sartorius, & Goelman, 2015; 

Cullen et al., 2014; Liu et al., 2016; Veer et al., 2010). In previous behavioral studies, 

depressive individuals exhibited  anhedonia, emotional indifference and lack of 
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emotional expression (Liss, Mailloux, & Erchull, 2008; Liss, Timmel, Baxley, & 

Killingsworth, 2005; Rottenberg, 2010), while individuals with high emotional 

expression showed a strong tendency of sensation seeking (Carton, Jouvent, Bungener, 

& Widlöcher, 1992). Given the association at the behavioral level, we thought our 

results were consistent, and this lack of state 4 in MDD might represent a deficit in 

the processing of sensory stimuli, which might lead to the failure of producing 

sufficient mood change. The reason why sensory regions were rarely found in 

previous studies might be that the FC changes in these areas occurred over a relatively 

short timescale, and static analyses might obscure the variation by treating the entire 

scan as a whole. In addition, the high connectedness of the DMN was another feature 

of state 4. Many studies have supported functional and structural abnormalities in the 

DMN as being important neural mechanisms of MDD, especially for rumination 

(Baune, Fuhr, Air, & Hering, 2014; Brakowski et al., 2017; Gong & He, 2015). In the 

work of Zhu et al., in patients with first episode MDD, decreased internetwork 

connectivity among subsystems of the DMN was observed, and this decrease was 

positively correlated with depressive rumination (X. Zhu, Zhu, Shen, Liao, & Yuan, 

2017). In addition, a study reported that the cognitive emotion regulation state 

significantly increased the interaction across functional networks of the brain, 

especially with the DMN and amygdala (Brandl et al., 2017). Taken together, it could 

be speculated that a wider connection might mean more effective regulation, and the 

lack of state 4 in MDD might reflect a deficiency of an intrinsic emotional regulation 

ability. 
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Another noticeable characteristic of state 4 was the lowest connectedness of the 

hippocampus and VS. The hippocampus has been thought to be closely associated 

with emotional learning, episodic memory and neural plasticity, and functional and 

structural abnormalities of this area have often been reported in MDD (Fatemi, Earle, 

& Mcmenomy, 2000; Lee, Ogle, & Sapolsky, 2015; MERVAALA et al., 2000; Peng et 

al., 2014; Rouach & Nicoll, 2015; Sapolsky, 2000; Taylor et al., 2014). Zhang et al. 

reported that the degree of the hippocampus was increased in MDD patients compared 

with healthy people (Zhang et al., 2012). The VS is part of the reward circuit, and its 

dysfunction has often been associated with low activity and anhedonia in MDD 

(Avissar et al., 2017; Furman, Hamilton, & Gotlib, 2011; Gabbay et al., 2013; Manelis 

et al., 2016; Pan et al., 2017; Phillips et al., 2015). Some studies reported a decline of 

connectivity in the VS region in patients with depression (Furman et al., 2011; 

Gabbay et al., 2013; Kenny et al., 2010; Kerestes et al., 2015), which was consistent 

with our results. Given the evidence above, low connectivity of the two 

emotion-related regions in state 4 might represent less negative emotions and higher 

activity, and MDD patients lacking this state might have a deficiency in decreasing 

negative emotions and getting pleasure from rewards. 

Dynamic FC states and personality traits 

We found that in the MDD group several FC states were correlated with personality 

traits. Extraversion scores showed positive correlations with fraction time and dwell 

time in state 4 and state 1 (with global strong connectivity), while there was a 

negative correlation with state 2 (with global weak connectivity). Generally, high 
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extraversion individuals display more positive affect, high sensation seeking, high 

sociability and higher willingness to engage the external world (Eysenck & Eysenck, 

1975; JanWacker & Smillie, 2015; Lei et al., 2015). Interestingly, a state with global 

weak connectivity was proven to be associated with an autistic trait in previous DFNC 

studies investigating autistic spectrum disorder. Although our results were not 

completely consistent with those findings, the general conclusion was convergent: 

increasing a highly connected state might increase an individual’s sociability. In 

addition, studies on DFNC proved that there were lower levels of a highly connected 

state in conditions of low arousal or unconsciousness (Allen et al., 2014; Barttfeld et 

al., 2015; Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013; Kucyi & Davis, 

2014; Young et al., 2017), which indicated that the highly connected states might also 

represent a basic energy level and that individuals with greater levels of these highly 

connected states might tend to have higher energy and less fatigue. 

For state 4, individuals with high neuroticism tended to show higher fraction time and 

longer dwell time. High neuroticism individuals usually exhibited attention and 

processing biases toward negative emotional stimuli, lower tolerance to stress, and 

greater negative emotional experiences (Canli, 2004; Eysenck & Eysenck, 1975), and 

high neuroticism was always thought to have many overlapping neural mechanisms 

with MDD (de Moor et al., 2015; Jylha et al., 2009; Quilty et al., 2008). In individuals 

with high neuroticism, dysfunction of the hippocampus was often reported and was 

suggested to be associated with negative emotional learning and maladaptive stress 

responses (Montag et al., 2013; M. N. Servaas et al., 2017; Servaas et al., 2013). In 
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patients with high neuroticism, the lack of this state 4 reflected the excessively strong 

connectivity between the hippocampus and other regions, which might make 

individuals more sensitive to negative stimuli and more difficult to get rid of negative 

emotions. In addition, studies have shown that high neurotic individuals showed weak 

whole brain connectivity and decreased global efficiency (Servaas et al., 2015), which 

was consistent with our results. 

In addition, we found that the correlations between dynamic connectivity states and 

personality was weak in the HC group but strong in the MDD group, so there might 

exist intergroup interactions in the relationship between individual personality and 

dynamic indicators, but the direction of causality among MDD, personality and 

dynamic measurements are still not clear. State 4 shows a certain consistency in the 

two groups, which might indicate that state 4 is relatively unaffected by personality. 

With the increase of depression, the change of personality may show a developmental 

process (extroversion is decreasing while neuroticism is increasing), while the 

continuous decrease of state 4 might play an essential role in this process. 

Additional considerations 

In previous dynamic studies, the focus has usually been on cognitive function or 

physiological attributes of dynamic FC, such as level of consciousness, daydreaming, 

and attentive function (Barttfeld et al., 2015; Kucyi & Davis, 2014; Kucyi, Hove, 

Esterman, Hutchison, & Valera, 2017). In this study, the dynamic characteristics of the 

functional connections showed associations with both a disease and general 

personality traits, which suggested that the dynamic properties of the brain might 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

contain information about general psychological variables. Based on previous studies, 

similar dynamic states of the brain have been shown to exist widely in both normal 

and diseased populations. In a repetitive study, data from 7500 subjects were used to 

verify the validity of the DFNC method; state 3 in that study and state 4 in the present 

study were relatively similar in both the activation patterns and the proportion of the 

total time (9%) (Abrol et al., 2017). In addition, in studies of populations with various 

disease states, the FC pattern of state 4 was often similar to patterns in other studies, 

such as states 2 and 3 in Damaraju et al. (Damaraju et al., 2014) and state 2in Rashid 

et al. (Rashid et al., 2014). Those results illustrated the universality and stability of the 

states, and proved that state-based measures have the potential as an important 

indicator of individual differences. 

The advantages of this study are mainly reflected in the following aspects. First, we 

used a large sample in this study to avoid the problems in previous MDD studies with 

small samples. In addition, the practice of combining personality traits with research 

in psychiatric disease is consistent with the current idea that diseased people and 

healthy people should not be seen as separate but as points in different locations on 

the same spectrum. Consistent with this idea, the results of this study support the 

potential of personality traits as an important factor affecting depression and as a 

therapeutic target. Moreover, we used the DFNC method, which was more sensitive to 

the overall mental state and could identify more instantaneous differences, so we 

could obtain information that is not available with traditional static FC analysis. 

There are also unsolved limitations to this study. In the current DFNC study based on 
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ICA technology, the selection of IC is subjective and much depends on the researchers, 

which results in difficulty comparing between different studies. In addition, the age 

effect observed in previous DFNC studies (Faghiri, Stephen, Wang, Wilson, & 

Calhoun, 2018) was not found in this study. We hypothesize that this may be related 

to the interaction effect between sample and age, but the actual effect still needs to be 

explored. Finally, we cannot determine the causal direction of the interactions 

between personality, MDD symptoms and dynamic FC states, so additional studies 

based on longitudinal data are necessary.
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Figures 

Figure 1. The pipeline of excluding subjects.  

 

Figure 2. A. Resting-state networks. 75 independent components were selected and 

divide into eight functional networks. The IC network from top to bottom is default 

mode network (DMN), control executive network (Fox et al.), salience network (SN), 

auditory network (AN), sensory motor network (SMN), visual network (VN), 

subcortical area (SC) and cerebellum (CB). B. The pipeline of DFNC method. This 

figure comes from Damaraju et al. (Damaraju et al., 2014). C. Mean functional 

connectivity matrix of healthy control and MDD group. 
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Figure 3. The dynamic FC states and their modular distribution. Using k-means 

clustering method, 4 FC states were extracted from dynamic FC data and the centroids 

of them were displayed. State 1 accounted for the largest proportion of the 

participants; it had the lowest modularity Q and was characterized by a wide range of 

positive connectivity. State 2 had the extensive weak connectivity among whole brain 

and high modularity. State 3 was highly segregated and had plenty of negative 

connectivity. In state 4, there existed lots of strong connectivity between and within 

sensory motor network, auditory network and visual network and only two large 

modules unlike the three modules in all other states; besides, the DMN region showed 

strong connectivity with other regions.  
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Figure 4. A. The radar maps of the mean FC within networks for all states. State 1 and 

state 4 displayed higher internetwork connectivity than state 2 and state 3. In addition, 

state 4 showed the lowest connectivity in SC and the highest connectivity in three 

sensory related networks (SMN, AN, VN). B. The radar maps of the mean FC 

between network and other regions for all states. State 1 showed the strongest 

connectivity inside and outside of CEN, SN, SC and CB; state 2 exhibited the weakest 

connectivity inside and outside of CEN, SN and SMN; state 3 exhibited the weakest 

connectivity inside and outside of DMN and VN; state 4 showed the strong 

connection inside and outside of DMN, AN, SMN and VN, meanwhile showing the 

weakest link outside of subcortical area (SC). C. The degree of subcortical regions for 

all states. State 4 showed the lowest centrality degree in hippocampus and ventral 

striatum (Cole et al.).  
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Tables 

Table 1. The basic information of participants. 

Characteristic Major Depression Disorders (N=109)  Healthy Control 

Subjects(N=107) 

 

First episode Recurrent With anxiety Medicated 

MDD 

(N=91) (N=18) (N=27) (N=50, >3 

months) 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

Age(years) 39.61 12.72 36.84 13.15 37.57 11.9 38.98 11.6 37.12 13.27 

Education(years) 11.77 3.52 12.74 3.86 12.06 3.54 11.74 3.04 13.48 4.18 

Durations of 

illness(months)  

41.99 59.92 98.53 57.21 51.23 55.84 77.4 72.23 / / 

HAMD 8.91 4.51 9.32 4.73 8.48 4.81 8.34 4.71 / / 

BDI-II scores  12.8 7.63 12.53 4.66 12.34 7.71 11.4 6.7 / / 

Neuroticism 15.05 5.3 18 4.14 16.2 4.8 17 5 13.17 3.66 

Extroversion 9.03 4.69 8.26 4.48 9.4 4.71 7.62 4.48 8.18 4.65 

Gender           

Female 61 67.03% 11 61.11% 17 62.96% 32 64% 69 64.49% 

Male 31 34.44% 7 38.89% 10 37.03% 18 36% 39 36.45% 

Table 2. The results of Mann-Whitney U Test 

 Mann-Whitney U Wilcoxon W Z SSE p 

Fraction      
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State1 6207.5 11985.5 0.828 454.02 0.408 

State2 5267.5 11045.5 -1.228 459.221 0.219 

State3 5750.5 11528.5 -0.177 458.82 0.86 

State4 6824 12602 2.754 360.439 0.006** 

Dwell time      

State1 6312.5 12090.5 1.059 454.01 0.289 

State2 5453 11231 -0.824 459.23 0.41 

State3 5943.5 11721.5 0.244 458.8 0.807 

State4 6869 12647 2.878 360.44 0.004** 

Transition 6298 12076 1.023 456.2 0.307 

Note: one asterisk (*) means p < 0.05, FDR correction; two asterisks mean p < 0.001, 

FDR correction. 

Table 3. The results of correlation analysis. 

 

 

 E N BDI Depression 

evaluation 

(SRRS) 

Phobic 

anxiety 

(SCL-90) 

Additional 

items 

(SCL-90) 

Age Education 

years 

Fraction          

State1 r 0.32 -0.07 -0.23 -0.07 -0.18 -0.03 0.17 0.03 

 p 0.001** 0.4 0.015* 0.45 0.07 0.8 0.082 0.73 

State2 r -0.31 0.16 0.08 0.242 0.15 0.14 -0.1 0.08 

 p 0.001** 0.1 0.4 0.011* 0.12 0.14 0.32 0.41 

State3 r -0.04 0.08 0.07 -0.14 0.12 -0.03 -0.09 -0.18 
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 p 0.69 0.4 0.5 0.14 0.23 0.73 0.38 0.07 

State4 r 0.292 -0.23 0.03 -0.15 -0.241 -0.196 0.02 0.17 

 p 0.002** 0.016* 0.7 0.13 0.012* 0.042* 0.83 0.074 

Dwell 

time 

         

State1 r 0.28 -0.06 -0.23 -0.09 -0.13 -0.02 0.165 0.02 

 p 0.003** 0.54 0.015* 0.35 0.17 0.825 0.09 0.9 

State2 r -0.28 0.1 0.02 0.175 0.13 0.11 -0.05 0.05 

 p 0.003** 0.27 0.81 0.07 0.18 0.26 0.62 0.6 

State3 r -0.04 0.08 0.06 -0.1 0.06 -0.12 -0.09 -0.18 

 p 0.7 0.42 0.5 0.33 0.526 0.23 0.35 0.06 

State4 r 0.29 -0.23 0.04 -0.147 -0.232 -0.195 0.02 0.18 

 p 0.002** 0.016* 0.72 0.13 0.016* 0.043* 0.85 0.07 

Transition r 0.176 0.067 -0.02 -0.104 -0.103 0.023 0.007 0.02 

 p 0.067 0.53 0.8 0.28 0.3 0.81 0.94 0.9 

Note: one asterisk (*) means p < 0.05, FDR correction; two asterisks mean p < 0.001, 

FDR correction. 


