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Patients with major depressive disorder (MDD) exhibit concurrent deficits in both sensory and higher-order cognitive processing.
Connectome studies have suggested a principal primary-to-transmodal gradient in functional brain networks, supporting the
spectrum from sensation to cognition. However, whether this gradient structure is disrupted in patients with MDD and how this
disruption associates with gene expression profiles and treatment outcome remain unknown. Using a large cohort of resting-state
fMRI data from 2227 participants (1148 MDD patients and 1079 healthy controls) recruited at nine sites, we investigated MDD-
related alterations in the principal connectome gradient. We further used Neurosynth, postmortem gene expression, and an 8-week
antidepressant treatment (20 MDD patients) data to assess the meta-analytic cognitive functions, transcriptional profiles, and
treatment outcomes related to MDD gradient alterations, respectively. Relative to the controls, MDD patients exhibited global
topographic alterations in the principal primary-to-transmodal gradient, including reduced explanation ratio, gradient range, and
gradient variation (Cohen’s d= 0.16–0.21), and focal alterations mainly in the primary and transmodal systems (d= 0.18–0.25).
These gradient alterations were significantly correlated with meta-analytic terms involving sensory processing and higher-order
cognition. The transcriptional profiles explained 53.9% variance of the altered gradient pattern, with the most correlated genes
enriched in transsynaptic signaling and calcium ion binding. The baseline gradient maps of patients significantly predicted
symptomatic improvement after treatment. These results highlight the connectome gradient dysfunction in MDD and its linkage
with gene expression profiles and clinical management, providing insight into the neurobiological underpinnings and potential
biomarkers for treatment evaluation in this disorder.
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INTRODUCTION
Major depressive disorder (MDD) is among the most common and
burdensome psychiatric disorders globally [1]. In addition to the
clinical symptoms, including low mood, loss of interest, and
fatigue, neuropsychological studies suggest that patients with

MDD exhibit deficits in low-level sensory processing, such as visual
processing and pain perception [2–4], and higher-order cognitive
functions, such as memory, social interaction, and reasoning [5–8].
Although many prior studies reported widespread abnormalities
and treatment effects in the brain structure and function in MDD
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[9–14], the neurobiological mechanism underlying these sensory-
cognitive deficits remains to be elucidated.
A hierarchical architecture is one of the fundamental organiza-

tional principles of the human brain, allowing information
encoding and integration from sensation to cognition [15]. Using
resting-state functional MRI (R-fMRI) [16] and the gradient
decomposition framework [17], researchers can decompose the
functional brain networks into different gradient components to
capture the topography of the connectomes. Such a gradient-
based method presents the relative differences in connectivity
patterns among regions along a continuous spectrum [17, 18]. In
healthy adults, the principal gradient spans the primary sensory
networks to the transmodal default mode network (DMN), which
corresponds to the hierarchical synaptic distributions in post-
mortem brains [15]. This spatial pattern also captures the
functional spectrum of activation maps from perception to
abstract cognition [17] and is spatially similar to the cortical
myelin content map [19]. Although many R-fMRI studies revealed
alterations in functional activity and connectivity involving the
primary [9, 20–22] and transmodal [20, 21, 23–25] systems in
patients with MDD, no studies reported whether and how the
principal primary-to-transmodal gradient of the functional con-
nectome is disrupted in this clinical population and whether this
disruption provides valuable information for treatment outcomes.
The characterization of the principal connectome gradient in MDD
could provide insight into the hierarchical network mechanisms
for understanding the concurrence of sensory-cognitive impair-
ments in MDD patients and offer potential biomarkers for
treatment evaluations in this disorder.
Many studies indicated that MDD is a moderately heritable

disorder [26]. Genome-wide association studies identified several
risk variants of genes linked to MDD, some of which play key roles
in the biological functions of presynaptic differentiation and
neuroinflammation [27]. Recently, the transcriptome-connectome
association studies provide a critical opportunity to bridge the gap
between the microlevel transcriptome profile and the macroscale
brain network [28–31]. Specifically, the functional architectures of
the connectomes are associated with gene expression profiles
involving ion channel activity and oxidative metabolism [29, 32].
Therefore, if patients with MDD exhibit disturbances in the
macroscale connectome gradient, these abnormalities might be
associated with transcriptome profiles. The elucidation of such an
association would enhance our understanding of the molecular
genetic underpinnings of the dysfunctional connectome gradient
in MDD.
To address these gaps, we employed a large multisite R-fMRI

dataset of 2227 individuals and postmortem gene expression data
to investigate the functional connectome gradients in MDD and
establish their associations with the transcriptome profile and
treatment outcomes. Specifically, we hypothesized that (i) the
principal primary-to-transmodal gradient is disrupted in patients
with MDD in both the global gradient topography and the focal
gradient scores of primary and transmodal systems; (ii) the regions
with MDD-related alterations of connectome gradient are
associated with meta-analytic maps involving multiple functional
domains, and with gene expression profiles enriched in particular
biological processes (e.g., synapse-related functions); and (iii) the
connectome gradients in MDD patients could predict clinical
outcomes after antidepressant treatment.

MATERIALS AND METHODS
Imaging dataset and preprocessing
We used two imaging datasets with a strict quality control. Dataset 1
included 1148 patients with MDD and 1079 controls (Table 1) recruited
from nine research centers through the Disease Imaging Data Archiving—
Major Depressive Disorder Working Group (DIDA-MDD). Dataset 2 included
20 first-episode drug-naïve patients (Supplementary Table 1) recruited

from Peking University Sixth Hospital [13]. Each patient in dataset 2
received an 8-week antidepressant treatment with escitalopram (an
antidepressant of selective serotonin reuptake inhibitor, SSRI), and the
treatment outcomes were recorded. All participants were diagnosed by
experienced psychiatrists using structured clinical interviews. The patients
met the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV)
diagnostic criteria for MDD [33] and did not meet the criteria for any other
Axis I disorder or current substance use. The severity of depression was
rated using the Hamilton depression rating scale (HDRS) [34]. The controls
did not have a current or lifetime history of Axis I disorder. The study was
approved by the ethics committees of each research center, and written
informed consent was obtained from each participant. For each
participant, the R-fMRI data were obtained using 3.0-T MRI scanners
(Supplementary Table 2) and were preprocessed using a standard pipeline
described in our previous work [9].

Gene expression dataset and preprocessing
The microarray-based gene expression data were downloaded from the
Allen Human Brain Atlas (AHBA) [28, 35]. The tissue samples in this
dataset were collected from the brains of six adult donors (mean age:
42.5 years, 1 female, Supplementary Table 3). Given the large transcrip-
tional differences between cortical and subcortical regions [35], we
conducted gene expression analysis within the cortical regions. We
preprocessed the gene expression microarray data according to a
recommended pipeline, including mapping the samples to a cortical
parcellation with 360 regions [36], probe reannotation and selection, and
normalization across donors [37].

Connectome gradient analysis
For each individual, we first constructed the voxelwise functional network
(18,933 nodes) and then applied the diffusion map embedding approach
[17, 38] to estimate the connectome gradient. Briefly, the top 10%
connections of each node were retained, and the cosine similarity between
each pair of nodes was calculated. The similarity matrix was further scaled
into a normalized angle matrix to avoid negative values [39, 40]. Then,
diffusion map embedding was applied to capture the gradient compo-
nents explaining the variance in the connectivity pattern of the functional
connectome. The resultant gradient maps were further aligned across
individuals using iterative Procrustes rotation [38]. Given that the principal
primary-to-transmodal gradient is closely associated with the neuronal
microstructure and cognitive functions [17, 18], we primarily focused on
MDD-related alterations in the principal gradients. Three global metrics,
including gradient explanation ratio, range, and variation, were calculated.
Finally, we utilized ComBat to correct the site effects on the gradient maps
and metrics [9, 41]. The case-control differences in the connectome
gradient were assessed by using a general linear model (GLM) with age
and sex as covariates. To further explore the influence of sex on the group
gradient differences, we used an additional GLM to examine possible sex-
by-group interactions. For the global gradient metrics, the statistical
significance threshold was set to P < 0.05. For the regional gradient score
maps, the significance threshold was set to P < 0.001 at the voxel level,
followed by Gaussian random field (GRF) correction at the cluster level of
P < 0.05 [42].

Association between the functional network topology and
connectome gradients in MDD
We further examined the association between MDD-related alterations in
the connectome gradients and the network topology changes. Specifically,
we computed the clustering coefficient (Cp) and the characteristic shortest
path length (Lp) of each participant in the abovementioned whole-brain
networks. Notably, Cp and Lp quantify brain network segregation and
integration, respectively [43, 44]. The between-group differences in Cp and
Lp were assessed using a GLM after controlling for age and sex. For the
network metrics exhibiting significant between-group differences, we
further examined the across-subject correlations to the global gradient
metrics.

Association analysis between meta-analytic cognitive terms
and MDD-related gradient alterations
We used Neurosynth (https://neurosynth.org/) [45] to examine the
association between the meta-analytic cognitive terms and the MDD-
related gradient alterations. The thresholded Z-maps derived from the
between-group comparisons of regional gradient scores were first
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divided into MDD-positive (i.e., MDD > controls) and MDD-negative (i.e.,
MDD < controls) maps. We used the “decoder” function in Neurosynth
to examine the spatial correlations between these MDD-positive or
MDD-negative maps and the meta-analytic map of each term in the
database. The significance of the correlation coefficients was deter-
mined by permutation tests in which spatial autocorrelations were
corrected [46].

Association analysis between gene expression and MDD-
related gradient alterations
We used a partial least squares (PLS) regression analysis [47] to explore the
association between the transcriptional profiles and between-group
differences in the principal gradient map. We first aligned the gene
expression data (10,027 genes) and between-group difference Z-map of the
principal gradient to a cortical parcellation atlas [36]. The gene expression
data and the Z-map of the between-group differences of the principal
gradient were set as the predictor variables and the response variable,
respectively. We adopted a spatial autocorrelation corrected permutation test
to examine whether the R2 of the PLS component was significantly greater
than that expected by chance. For each significant component, we used a
bootstrapping method to correct estimation error of the weight of each gene
[48]. We then ranked the genes according to their corrected weights, which
represent their contribution to the PLS regression component. Both the
descending and ascending sequences were included in the gene enrichment
analysis to identify enriched Gene Ontology terms by using GOrilla (http://
cbl-gorilla.cs.technion.ac.il/) [49]. All three ontology categories, including
biological process, molecular function, and cellular component, were
considered. Significant enrichment was set to Benjamini-Hochberg false
discovery rate (FDR)-corrected q < 0.05 [48, 50]. We also validated the sex and
hemisphere effects on this connectome-transcriptome association analysis.
To further determine whether the MDD-related genes identified in previous

gene studies contributed to the PLS model more than other disorder-related
genes, we analyzed the disorder-related genes from the in situ hybridization
(ISH) gene expression data provided by the AHBA (https://help.brain-map.org/
display/humanbrain/Documentation). We selected previously reported MDD-
related genes and genes related to other six brain disorders from the gene
list. We compared the PLS weights between genes of MDD and those of other
disorders using permutation tests. Moreover, we examined the correlation
between the expression profile of each gene and the between-group Z-map
of the principal gradient. The percentage of significantly correlated genes was
compared between MDD and other disorders using permutation tests.

Effects of clinical factors
To investigate the effects of clinical factors on the connectome gradient,
we classified the patients into different pairs of subgroups according to
their clinical information, including patients with an early-onset age less
than or equal to 21 years vs. greater than 21 years (this cutoff is consistent
with the DSM-IV text revision definition of the early-onset of unipolar
depressive disorders and previous studies [11, 51]; a cutoff age of 18 years
was applied for validation), patients suffering from their first episode vs.
recurrent episodes, and patients receiving medication vs. not receiving
medication. Then, we compared the gradient metrics between each
corresponding pair of subgroups by using a GLM. Moreover, we explored
the relationships between the gradient metrics and HDRS using partial
correlations with age and sex controlled.

Prediction of treatment outcome
A support vector regression (SVR) was conducted to examine the
prediction ability of connectome gradient for treatment response (i.e.,
changes of HDRS) in patients. The baseline principle gradient maps were
served as predictive features, and the model was validated using an
embedded 5-fold cross-validation procedure and permutation tests. For
comparison purposes, we also estimated the prediction ability of the
functional connectivity strength (FCS, i.e., summed connectivity for each
voxel) map for treatment response.

Validation analysis
We validated our results by considering six potential influencing factors,
including specific scanning site, age, Fisher’s r-to-z transformation to the
correlation matrix, head motion, different gradient alignment methods,
and non-parametric permutation tests. The Jaccard index was used to
examine the similarity between each validation result and the main
finding.Ta

bl
e
1.

co
n
ti
n
u
ed

C
en

te
r

G
ro
up

A
g
e,

m
ea

n
(S
D
),
ye

ar
s

Se
x
(M

/F
)

Ed
uc

at
io
n
,
m
ea

n
(S
D
),
ye

ar
s

D
ur
at
io
n
of

ill
n
es
s,

m
ea

n
(S
D
),
ye

ar
s

Ep
is
od

e
(F
ir
st
/

R
ec
ur
re
n
t)

M
ed

ic
at
ed

(Y
es
/

N
o)

H
D
R
S,

m
ea

n
(S
D
)

M
ea

n
FD

,
m
ea

n
(S
D
),
m
m

Ta
ip
ei

C
o
n
tr
o
ls

(N
=
10

9)
51

.1
2
(1
1.
70

)
69

/4
0

14
.8
3
(3
.6
4)

0.
12

8
(0
.0
58

)

t
o
r
χ2
/P

3.
06

/0
.0
03

0.
25

/0
.6
19

−
6.
17

/<
0.
00

1
1.
18

/0
.2
40

Z
Z
U

Pa
ti
en

ts
(N

=
19

5)
18

.4
0
(5
.5
4)

97
/9
8

15
.0
2
(3
.7
1)

1.
29

(1
.4
8)

N
.A
.

0/
19

5
22

.4
3
(5
.7
0)

0.
10

0
(0
.0
45

)

Z
h
en

g
zh

o
u

C
o
n
tr
o
ls

(N
=
10

0)
22

.4
3
(4
.4
9)

47
/5
3

N
.A
.

0.
08

8
(0
.0
39

)

t
o
r
χ2
/P

−
6.
29

/<
0.
00

1
0.
20

/0
.6
55

2.
16

/0
.0
32

A
ll
d
at
a

Pa
ti
en

ts
(N

=
11

48
)

33
.8
3
(1
4.
97

)
47

5/
67

3
12

.0
(3
.8
1)

2.
10

(3
.6
0)

51
2/
79

27
7/
62

2
21

.3
1
(6
.7
7)

0.
12

5
(0
.0
67

)

C
o
n
tr
o
ls

(N
=

10
79

)

33
.9
6
(1
3.
87

)
46

6/
61

3
14

.0
(3
.6
5)

0.
12

3
(0
.0
63

)

t
o
r
χ2
/P

−
0.
21

/0
.8
32

0.
75

/0
.3
87

−
12

.0
6/
<
0.
00

1
0.
80

/0
.4
23

Th
e
G
C
M
U
1
an

d
G
C
M
U
2
d
at
as
et
s
w
er
e
co

lle
ct
ed

u
si
n
g
th
e
sa
m
e
sc
an

n
er

at
o
n
e
si
te

w
it
h
d
iff
er
en

t
sc
an

p
ar
am

et
er
s.
Th

e
ep

is
o
d
e
st
at
u
es

w
er
e
n
o
t
av
ai
la
b
le

in
C
SU

,
K
M
U
,Y

M
U
,a

n
d
Z
Z
U
.

SD
st
an

d
ar
d
d
ev

ia
ti
o
n
,
M

m
al
e,

F
fe
m
al
e,

H
D
RS

H
am

ilt
o
n
D
ep

re
ss
io
n
R
at
in
g
Sc
al
e,

FD
fr
am

ew
is
e
d
is
p
la
ce
m
en

t,
CM

U
C
h
in
a
M
ed

ic
al

U
n
iv
er
si
ty
,
CS

U
C
en

tr
al

So
u
th

U
n
iv
er
si
ty
,
G
CM

U
G
u
an

g
zh

o
u
U
n
iv
er
si
ty

o
f

C
h
in
es
e
M
ed

ic
in
e,
KM

U
K
u
n
m
in
g
M
ed

ic
al
U
n
iv
er
si
ty
,P
KU

Pe
ki
n
g
U
n
iv
er
si
ty
,S
CU

Si
ch

u
an

U
n
iv
er
si
ty
,S
W
U
So

u
th
w
es
t
U
n
iv
er
si
ty
,Y
M
U
N
at
io
n
al

Ya
n
g
-M

in
g
U
n
iv
er
si
ty
,Z
ZU

Z
h
en

g
zh

o
u
U
n
iv
er
si
ty
,N

.A
.n

o
t
av
ai
la
b
le
.

M. Xia et al.

4

Molecular Psychiatry

http://cbl-gorilla.cs.technion.ac.il/
http://cbl-gorilla.cs.technion.ac.il/
https://help.brain-map.org/display/humanbrain/Documentation
https://help.brain-map.org/display/humanbrain/Documentation


RESULTS
The principal primary-to-transmodal gradient explained 11.9 ± 3.1% of
the total connectivity variance (MDD, 11.7 ± 3.2%; HC, 12.1 ± 3.0%,
Supplementary Fig. 1), which was organized along a gradual axis from
the primary visual/sensorimotor networks (VIS/SMN) to the DMN
(Fig. 1a), replicating the recent observation of connectome gradients
from the primary to the transmodal cortices in healthy adults [17]. The
spatial patterns of the group-averaged principal gradient maps were
remarkably similar between the MDD and HC groups (Spearman’s
ρ= 0.999, P< 0.0001, permutation tests with spatial autocorrelation
corrected, Supplementary Fig. 2). A visual inspection of the histogram
revealed that the extremes of the primary-to-transmodal gradient
were contracted in MDD relative to the control range (Fig. 1b).
Specifically, for each system, we compared the gradient score
between the group-averaged maps of the MDD group and control
groups by using paired t-tests across the voxel. Compared with the
HC group, the MDD group had higher gradient scores in the VIS and
SMN but lower in the other subnetworks (FDR-corrected q< 0.05,
Fig. 1c and Supplementary Table 4).

Alterations in connectome gradients in MDD
The between-group statistical comparisons showed that the
primary-to-transmodal gradient in the MDD group explained
less variance in the functional connectome than that in the HC
group (Cohen’s d=−0.16, P= 0.0002, Fig. 2a and Supplemen-
tary Table 5). Moreover, the patients with MDD showed a
narrower range of scores (d=−0.21, P= 0.0000008) and less

spatial variation (d=−0.20, P= 0.000002) than the HCs (Fig. 2a
and Supplementary Table 5). Regionally, the MDD group
showed lower gradient scores mostly in the DMN (76.6%) but
higher scores mainly in the VIS (59.2%) and SMN (40.1%) than
the HC group (absolute d= 0.18–0.25, voxel-level P < 0.001,
GRF-corrected P < 0.05, Fig. 2b, Supplementary Table 6). No
significant sex-group interaction effect was observed on either
the global or local gradient measures. The results of the second
and third gradients are shown in Supplementary Figs. 3, 4 and
Supplementary Tables 5, 7, 8.

Correlation between connectome gradients and network
topology in MDD
The patients with MDD exhibited lower Cp than the HCs (d=
−0.14, P= 0.0008), indicating lower functional segregation of
brain networks in MDD. Moreover, Cp was correlated with the
global metrics of the principal gradient across the individuals with
MDD (explained ratio: r= 0.336, P < 0.001; gradient range: r=
0.257, P < 0.001; spatial variance: r= 0.356, P < 0.001, Fig. 2c).

Meta-analytic cognitive functions related to gradient
alterations in MDD
The regions with higher principal gradient scores in MDD were
correlated with several meta-analytic cognitive terms mainly
involved in sensorial and perceptional processes, such as visual,
sensory, and audiovisual processes (Fig. 2d). The regions with
lower principal gradient scores in MDD were correlated with

Fig. 1 Connectome gradient mapping in patients with MDD and controls. a The principal gradient was organized along a gradual axis from
the primary visual/sensorimotor networks to the default mode network. Surface rendering was generated using BrainNet Viewer (www.nitrc.
org/projects/bnv/) [68] with the inflated cortical 32 K surface [36]. b Global and c system-based histograms showing that the extreme values
were contracted in the patients with MDD relative to those in the healthy controls. Arrows in c indicate the direction of the significant
differences between the MDD patients and controls. The whole-brain voxels were assigned to eight systems according to a 7-system cortical
parcellation [69] and a subcortical system of the AAL atlas [70]. VIS visual network, SMN sensorimotor network, DAN dorsal attention network,
VAN ventral attention network, SUB subcortical regions, LIB limbic network, FPN frontoparietal network, DMN default mode network.
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several high-order cognitive terms, including memory, social
interaction, and reasoning (Fig. 2d). For details, see Supplementary
Tables 9–11.

Gene expression profiles related to gradient alterations in
MDD
The first two components of the PLS regression explained 51.7% of
the variance in the MDD-related alterations in the principal gradient
(P < 0.0001 for component 1 and P= 0.0037 for component 2,
permutation tests with spatial autocorrelation corrected, Supple-
mentary Fig. 5). Component 1 represented a transcriptional profile
characterized by high expression mainly in the posterior parietal-
occipital areas but low expression in the prefrontal areas (Fig. 3a).
Component 2 revealed a gene expression profile with high
expression mainly in the sensorimotor, visual, and temporal cortices
but low expression in the frontoparietal cortices (Fig. 3b). The
regional mapping of these two components was positively
correlated with the Z-map of the primary-to-transmodal gradient
(component 1: r= 0.574, P < 0.0001; component 2: r= 0.456, P <
0.0001, permutation tests with spatial autocorrelation corrected,
Fig. 3a, b). The Gene Ontology enrichment analysis revealed that
the genes ranked in ascending order of the component 1 weight
were enriched in biological processes related to transsynaptic
signaling and molecular function of calcium ion binding (FDR-

corrected q < 0.05, Fig. 3c and Supplementary Table 12). No
significant enrichment of cellular components was observed. Most
terms remained significant in separate analyses of the male
participants or left hemisphere (Supplementary Tables 13, 14).
The genes ranked according to the weight of component 2 did not
show significant enrichment. Moreover, the MDD-related genes
from the ISH survey exhibited stronger PLS weights than the genes
related to other disorders (except for autism, all Ps < 0.05, Fig. 3d).
The expression profiles of sixty-seven percent (8 of 12) of the MDD-
related genes were correlated with the between-group Z-map of
the primary-to-transmodal gradient (Supplementary Table 15). This
percentage was higher than that in all other disorder categories (all
Ps < 0.0004, Fig. 3e).

Clinical relations to connectome gradients in MDD
The patients with an onset in adolescence (age ≤ 21 years, N= 300)
showed a narrower gradient range (d= 0.29, P= 0.0006) and smaller
region variation (d= 0.19, P= 0.018) in the principal primary-to-
transmodal gradient than the patients with an onset age older than
21 years (N= 292) (Fig. 4a). These results were also replicated using a
cutoff age of 18 years (Supplementary Table 16). There were no
significant differences in the topographic features of the principal
gradient between the patients who were and those who were not
taking medication or the patients in their first episode and recurrent

Fig. 2 Statistical comparison of the gradient metrics. a Case-control differences in the global metrics of the principal gradient. b Voxelwise
statistical comparisons between the healthy controls and patients with MDD and distribution of the regional case-control difference in
different systems. Higher/lower values in MDD are presented as warm/cold colors. The statistical significance level was set as voxel-level P <
0.001 and Gaussian random field cluster level-corrected P < 0.05. c Case-control differences in the clustering coefficient (Cp) and correlations
between the Cp and global metrics of the principal gradient across all patients. d Word clouds of cognitive functions associated with brain
regions that exhibited higher (red) or lower (blue) gradient scores in MDD. The font size of a given cognitive term corresponds to the
correlation coefficient (r) of the between-group Z-map of the principal gradient and meta-analytic map of that term generated by Neurosynth.
The boxes below the word clouds indicate the correspondence between the font size and the correlation coefficient. All correlations are
significant (FDR q < 0.05). ***P < 0.001. VIS visual network, SMN sensorimotor network, DAN dorsal attention network, VAN ventral attention
network, SUB subcortical regions, LIB limbic network, FPN frontoparietal network, DMN default mode network.
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patients (Supplementary Table 16). The voxelwise comparisons
showed that there was no significant difference in the regional
scores of the principal gradient between these clinical category pairs.
The range of the primary gradient was correlated with HDRS across
all patients (r= 0.080, P= 0.009, Fig. 4b).

Treatment outcome prediction of connectome gradients in
MDD
The principal gradient map of the patients at baseline could
significantly predict their HDRS changes after 8-week antidepressant
treatment (r= 0.652, P< 0.001, one-tailed permutation test, Fig. 4c).
The most contributive features were located in the DMN (percentage
of total feature weights in SVR: 26.4%), SMN (15.3%), and FPN (15.2%)
(Fig. 4d). In contrast, the baseline FCS map of the patients could not
predict their HDRS changes (r=−0.385, P= 0.902, one-tailed
permutation test).

Validation results
Overall, the MDD-related alterations in the principal connectome
gradient observed using different validation strategies remained
highly similar to our main findings, with a Jaccard index= 0.90 ± 0.12
for the global metrics and 0.70 ± 0.17 for the regional gradient scores
(Supplementary Figs. 7, 8 and Supplementary Tables 18–20). The
differences in both gradient range and variation between MDD
subgroups remained significant while considering different validation
strategies (Supplementary Table 21).

DISCUSSION
In this study, we for the first time report connectome gradient
dysfunction in patients with MDD and its association with

transcriptional profiles and treatment outcomes. These findings
advance our understanding of the neurobiological mechanisms
underlying sensory-cognitive deficits and provide potential
biomarkers for treatment evaluations in MDD.
In patients with MDD, the lower explained ratio of the principal

gradient represents less connectivity variance in the functional
connectome, while the narrower range and smaller variance
indicate a less differentiated connectivity pattern between the
primary and transmodal areas. The DMN regions are geometrically
located in the cortex at maximal spatial distances from the
primary system, corresponding to their distribution in the
embedded gradient axis [17]. The maximal differences in terms
of the physical distance and connectivity dissimilarity ensure the
complete processing route from mapping concrete stimuli to
integrating abstract conceptions [52] while increasing divergence
between the primary and transmodal areas to facilitate the
formation of abstract cognition by avoiding the interference of
input noise [53]. Our meta-analysis confirms that MDD-related
alterations in the focal gradient are located in brain areas
involving multidomain cognitive functions, including sensory
and perceptual processes and higher-order functions. These
functions have been reported to be impaired in patients with
MDD [2–8]. Thus, our results provide a potential linkage between
connectome gradient disruption and concurrence of sensory-
cognitive impairments in MDD. We also show that the topography
alteration of the principal gradient was correlated with reduced
functional segregation (in terms of clustering coefficient) of the
brain network in MDD. This reduction in functional segregation
represents a shift toward a randomized network configuration,
which has been observed in previous studies of MDD [22, 54, 55].
Here, our results established the connections between alterations

Fig. 3 Association between MDD-related gradient alterations and gene expression. a The first PLS component (PLS 1) identified a gene
expression profile with high expression mainly in the posterior parietal-occipital areas but low expression in the prefrontal areas. The
transcriptional profiles were positively correlated with the between-group Z-map of the principal gradient (permutation tests with spatial
autocorrelation corrected, 10,000 times). The shadow indicates the 95% confidence intervals. Each dot represents a region. b The second PLS
component (PLS 2) revealed a gene expression profile with high expression mainly in the sensorimotor, visual, and temporal cortices but low
expression in the frontoparietal cortices. The transcriptional profiles were positively correlated with the between-group Z-map of the principal
gradient. c Genes ranked in ascending order of the PLS 1 weight were enriched in the biological process of transsynaptic signaling and
molecular function of calcium ion binding (FDR q < 0.05). d The PLS weight of predefined genes related to different disorders based on the
in situ hybridization (ISH) gene list provided by the AHBA. The asterisk indicates a significant difference between MDD and a specific disorder.
**P < 0.01; *P < 0.05. e The percentage of disorder-related genes showing significant correlations between the expression profile and the
between-group Z-map of the principal gradient. AD Alzheimer’s disease, ASD autism, EP epilepsy, ID intellectual disability, PD Parkinson’s
disease, SCZ schizophrenia.
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of the network gradient and topology in MDD. Importantly, the
principal gradient scores of the DMN contributed greatly to our
prediction model for antidepressant outcomes. This finding is
comparable with several previous reports, demonstrating that the
DMN distinguishes remitters from non-remitters in antidepressant
medication [56] and predicts patients’ response to sertraline [57].
Our results extended this knowledge that not only the DMN
connectivity itself but also its differentiated patterns to other
systems are potential markers for clinical outcomes in depression.
Notably, the principal gradient explained on average 12% of the
connectome variance at the individual level in the current study.
This ratio is relatively low compared to gradients decomposed
from a group-level matrix [17], however, it is comparable to some
individual-level analyses [58].
Our connectome-transcriptome association analysis established

a link between MDD-related changes in connectome gradients
and gene expression enriched in transsynaptic signaling and
calcium ion binding. Transsynaptic signaling is among the most
fundamental biological processes that contributes to a series of
critical molecular functions, including instructing the formation of
synapses and regulating synaptic plasticity [59, 60]. Disruptions in
transsynaptic signaling in many key pathways can influence the
formation and stability of synapses and play critical roles in the
pathology of depression [61]. Studies involving postmortem
tissues and rodent models suggest that exposure to chronic
stress disrupts the pathway of brain-derived neurotrophic factor
(BDNF)-tropomyosin-related kinase B (TrkB) receptor signaling by
reducing the downstream extracellular signal-regulated kinase

(ERK) and Akt pathways in the hippocampus and prefrontal cortex
[62, 63]. Disturbances in these signaling pathways can decrease
the expression and function of BDNF and further cause neuronal
atrophy in regions implicated in depression [64]. In addition to
transsynaptic signaling, calcium ion binding is a molecular
function crucial for intracellular signaling. Calcium ion binding
can occur in signal transduction resulting from the activation of
ion channels or as a second messenger in wide-ranging
physiological pathways involving synaptic plasticity. Evidence
from postmortem studies suggests that the density of calbindin-
immunoreactive GABAergic neurons is reduced in the dorsolateral
prefrontal cortex of MDD patients [65]. Currently, measuring
regional gene expression in the brain in vivo is extremely difficult.
Thus, our results offer a preliminary clue in explaining the
relationship between these microscale biological events and
macroscopic network alterations in MDD.

Limitations and future research
First, the current work is a retrospective study in which the
cognitive performance of the patients was not measured.
Alternatively, we examined the associations between the gradient
alteration maps and meta-analytic cognitive terms from the
Neurosynth database [45]. These results should be considered as
evidence of an indirect brain-cognition association in MDD.
Second, all patients involved in the prediction analysis were
responders to escitalopram, given that patients who had a poor
response discontinued the medication or changed their treatment
plans. Future studies need to include more non-responders to

Fig. 4 Clinical effects on the gradient topography and prediction of treatment outcomes in patients with MDD. a Group differences in the
range and variance of the principal gradient between the patients with an onset age ≤ 21 years and those with an onset age > 21 years. ***P <
0.001; *P < 0.05. b The correlation between the range of the principal gradient and the HDRS across all patients. c Scatter plot presents the
correlation between the observed HDRS change after 8-week antidepressant treatment and the predicted HDRS change derived from the SVR
analysis (permutation-tests; P < 0.001). Each dot represents the data from one patient, and the dashes indicate the 95% prediction error
bounds. d The absolute summed weights in 5-fold cross-validation were mapped onto the brain surface. Regions with higher/lower predictive
power were colored in white/red. The radar map represents the distribution of predictive power in different systems. OA onset age, HDRS
Hamilton depression rating scale, VIS visual network, SMN sensorimotor network, DAN dorsal attention network, VAN ventral attention
network, SUB subcortical regions, LIB limbic network, FPN frontoparietal network, DMN default mode network.
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establish prediction models for treatment‐resistant depression.
Third, several critical variables related to the pathology of MDD,
such as poor sleep, social stigma, and chronic stress, were not
collected in the current dataset. These variables should be
recorded in future studies to assess their effects on the functional
connectome in MDD. Fourth, the gene expression data from the
AIBS were sampled from donors without a diagnosis of MDD, and
were susceptible to intersubject variability. A larger sample of
whole-brain gene expression data from patients with MDD is
required to further characterize and validate the connectome-
transcriptome relationship. Fifth, this study applied the ComBat
method to harmonize gradient measures across sites. However,
potential nonlinear and site-by-group interactive effects remain to
be elucidated, for example using traveling-subject datasets and
nonlinear models. Finally, the observed effect size of the between-
group gradient differences is relatively small (d= 0.16–0.21) but is
comparable with previous large-sample imaging studies of MDD
from the ENIGMA project [11, 66] and UK Biobank [67]. The small
effect size might be due to the high heterogeneity among the
MDD patients. Using multivariable statistical methods and
considering the subtypes of MDD could provide more effective
strategies for improving the statistical power.

DATA AVAILABILITY
The core analysis code and resulting data are publicly available at github.com/
mingruixia/MDD_ConnectomeGradient. For details of Materials and Methods, see
Supplementary Material.
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